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Topics

1. Quantification and the inferential paradigm

2. Foundations of statistical inference

3. Bayesian concepts

4. Frequentist concepts and hypothesis testing

5. Statistical modelling
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Topic: Quantification and the inferential paradigm

“When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind; it may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the state of Science, whatever the
matter may be.”

– William Thompson (Lord Kelvin), 1883, Popular Lectures and Addresses

“Statistics . . . may best be considered as the determination of the probable
from the possible.”

– JC Davis, 2002, Statistics and data analysis in geology
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Example of qualitative statements

• “The projective transformation can successfully georeference a small-format air
photo (SFAP) from ten ground control points measured with a single-receiver
GPS”.

• “In villages where a participatory GIS was developed there was less conflict
between government plans and local goals.”

• “Shifting cultivation systems have expanded in the past ten years, mainly at the
expense of primary forest.”
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Example of quantitative statements

• “Primary forest covers 62% of the study area.”

• “On 10–September-2000 Lake Naivasha contained 8.36 · 109m3 of water.”

• “Twice as many boys as girls attend secondary school in District X.”

Problem: In almost all cases, it is impossible to observe (measure) the entire
population of interest.
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Inferential paradigm

• We have a sample which represents some population;

• We want to make a quantitative statement about the population;

• This requires us to infer from sample to population.

“Statistics is the branch of applied mathematics that studies ways of drawing
inferences from limited and imperfect data.

We have some data . . . , but we know that our data are incomplete, and
experience tells us that repeating our experiments or observations, even
taking great care to replicate the conditions, gives more or less different
answers every time. It is foolish to treat any inference from only the data in
hand as certain.” – Shalizi, American Scientist 98:186
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Fact vs. inference

“Facts”: (with some measurement uncertainty):

• “The median sigma of georeferencing of 14 photos was 5.16 m”.

• “Participants in the workshop had from two to ten years of formal education.”

• “Twelve of the 40 crop fields surveyed in 2004, with an area of 6.3 ha out of the
18 ha total crop land surveyed, were covered by primary forest in 1990”.

These are examples of descriptive statistics: summarizing many numbers for
interpretation.

(continued . . . )
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Fact vs. inference (continued)

Inferences:

• “The median sigma of georeferencing with the projective transform is no greater
than X m”

• “Small farmers in the district have from X to Y years of formal education.”

• “X% of the crop fields active in 2004 and Y% of their area were covered by
primary forest in 1990”.

These are examples of inferential statistics: making a probabilistic statement
about the population, based on the observation of some sample.

(see next).
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Populations and samples

• Population (“universe of discourse”)

* the set of objects about which we want to make a statement

* most have not been observed

* difficult to precisely specify (limit) the population

• Sample

* the portion of the population that has been observed (measured)

* it must somehow represent the population

UT/ITC Enschede

Statistical inference for research 9

Sampling design

• The relation between population and sample is called the sampling design

• It is specified by the researcher

• The relation must be explicit and operational

* What is the sampling frame? (list of possible sampling units)

* How are the sampling units selected from the frame?

* How are the sampling units identified in the field?

* How are the target variables measured?
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Representing the population with the sample

This is the basis of statistical inference – the researcher must be able to:

1. explicitly identify the population of interest – the inferential statement is made
about this population and no other;

2. argue that the sampling frame represents the population;

3. describe the relation between the actual sample and the sampling frame – in
particular, the a priori probability of selecting each potential sampling unit.

Note that the third step comes from the nature of the sampling design, but the
others require meta-statistical arguments.
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Topic: Foundations of statistical inference

Deep questions:

• What is the meaning of probability?

• What does an inferential statement really mean?

Two principal interpretations:

• Frequentist, also called classical or British-American;

• Bayesian.
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History

• Frequentist

* R A Fisher at Rothamstead Experimental Station (England), 1920’s and 1930’s

* developed by well-known workers (Yates, Snedecor, Cochran . . . )

* Common statistical computing “packages” follow this

• Bayesian

* named for Thomas Bayes (1701–1761) but developed since the 1960’s
(Jeffreys, de Finetti, Wald, Savage, Lindley . . . )

* simple applications of Bayes’ theorem are not controversial

* requires sophisticated computing
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Principal differences

• Interpretation of the meaning of probability

• Hypothesis testing

• Presentation of probabilistic results (e.g. confidence intervals)

• Computational methods
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Topic: Bayesian concepts

For a Bayesian, probability is:

• the degree of rational belief that something is true;

• “rational”, so certain rules of consistency must be followed;

• All probability is conditional on evidence;

• Any statement has a probability distribution: any value of a parameter has a
defined probability;

• Probability is continuously updated in view of new evidence.

So, there is a degree of subjectivity; but this is reduced as more evidence is
accumulated.
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Types of probability

• Prior probability: before observations are made, with previous knowledge;

• Posterior probability: after observations are made, using this new information;

• Unconditional probability: not taking into account other events, other than
general knowledge and agreed-on facts;

• Conditional probability: in light of other information, specifically some other
event(s) that may affect it.

UT/ITC Enschede



Statistical inference for research 16

Bayes’ rule (simple form)

Bayes’ Rule is used to update a prior probability P(A), based on new information
that an event B with prior probability P(B) has occurred, and knowing that the
conditional probability P(B|A) of B given A, to a posterior conditional probability
P(A|B)

P(A|B) = P(A) · P(B|A)
P(B)

(1)

The last factor is the proportion by which the prior is updated, sometimes called
the likelihood function.

1. Estimate P(B|A): how likely it is to observe B when A is true)

2. Estimate the priors P(A) and P(B)

3. The probability of A is updated by the information that B was in fact observed.

This only works if P(B|A) is a reliable estimate.
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Example – medical diagnosis

• Patient has a fever (event B)

• suspect that patient has malaria (event A)

To calculate the probability that the patient in fact has malaria, need to know:

1. The conditional probability of a person with malaria having a fever, P(B|A),
which we estimate as, say, 0.9 (some people who are infected with malaria don’t
have a fever);

• Estimate this from a large number of previous confirmed malaria cases; which
proportion of them presented a fever?

(continued . . . )
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2. The unconditional prior probability P(A) of having malaria, i.e. the proportion
of the population that has it, say 0.2; this is the prior probability of having
malaria before looking at our symptoms;

• Estimate this from surveys of malaria prevalence.

3. The unconditional probability of having a fever from whatever cause, say
P(B) = 0.25.

• Estimate this from a large number of previous cases with any diagnosis; what
proportion were presented with fever?
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Medical diagnosis – continued

By Bayes’ rule, compute the posterior probability that, given that an individual has
a fever, that they have malaria:

P(A|B) = 0.2∗ (0.9/0.25) = 0.72.

The probability of malaria has been greatly increased from the prior (0.2) because
the presence of fever is so closely liked to the disease.

The likelihood function was thus 0.9/0.25 = 3.6; the odds increased by 3.6 times
in the presence of the information about the symptom.
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General form of Bayes’ rule

Sample space A of outcomes can be divided into a set of mutually-exclusive
outcomes A1, A2, . . ..

Then the conditional (posterior) probability of any of these outcomes Ai, given that
event B has occurred, is:

P(Ai|B) = P(B|Ai)P(Ai)∑
j P(B|Aj)P(Aj)

(2)
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Example of general Bayes’ rule

Example: land cover class at a particular location; one of several legend categories.

1. The prior probability P(Ai) of a location belonging to class i is estimated from
prior knowledge of the area to be mapped, perhaps a previous map or even
expert opinion.

2. The conditional probability P(B|Ai) of some event (such as an aspect of a
spectral signature) in for all possible land must also be given either from theory
or statistical estimation.

3. Compute the posterior probability that a given location is in fact in the given
class. This is precisely what “Bayesian” image classification algorithms do.
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Topic: Frequentist concepts

The frequentist interpretation of probability of an event is is the proportion of
time it would occur, should the experiment that gives rise to the event be repeated
a large number of times.

• Throwing dice: no problem, the experiment can be repeated indefinitely

• Agricultural yield trial: could have selected other locations, can repeat in other
(similar?) years

• Probability of a large meteor hitting the Earth within the next ten years?

• Probability that the human species will make itself extinct within the next ten
years?
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Frequentist hypothesis testing

The null and alternate hypotheses:

• The null hypothesis H0: Not rejected until proved otherwise (“innocent until
proven guilty”); if the evidence is not “strongly” against this, we can’t reject it.

• The alternate hypothesis H1: Something we’d like to prove, but we want to be
“fairly sure”.

The “null” hypothesis does not have to be “no difference” or “no effect”.
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Classification of inferential errors

Two types of inferential errors:

Type I : rejecting the null hypothesis when it is in fact true; a false positive

Type II : not rejecting the null hypothesis when it is in fact false; a false negative
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Significance levels

Quantify the risk of making an incorrect inference. These are of two types:

• α is the risk of a Type I error, i.e. a false positive;

* “The probability of convicting an innocent person” (null hypothesis: innocent
until proven guilty)

• β is the risk of a Type II error, i.e. a false negative

* “The probability of freeing a guilty person”

• The quantity (1− β) is called the power of a test to detect a true positive.
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Types of errors

Null hypothesis H0 is really . . .
Action taken True False

Reject Type I error committed success
Don’t reject success Type II error committed
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Conventional significance levels

Conventional levels of α, with common-language equivalents of how sure we are
that the null hypothesis can not be accepted:

• “Marginally Significant” : α = 0.1 (“maybe”)

• “Significant” : α = 0.05 (“fairly sure”)

• “Highly Significant” : α = 0.01 (“very sure”)

• “Very Highly Significant” : α = 0.001 (“extremely sure”)

These must be balanced depending on the consequences of making each kind of
error – it is a subjective decision.
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Convoluted metastatistics

In frequentist thinking we can never “accept” a hypothesis; all we can say is that we
don’t have sufficient evidence to reject it.

We can never say that it’s probably true, only that it’s probably not false.
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Deciding on a significance level

• α is set by analyst – it is a subjective decision;

• β depends on the form of the test, the true difference, and the variance of the
data

* inherent in the phenomenon (uncontrollable)

* due to imprecise measurements (controllable)

Some journals or funding agencies have defined levels for certain kinds of studies.
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Example

Null hypothesis: a new crop variety is no better than the current one.

• The cost of introducing a new crop variety if it’s not really better, and the lost
income in case the new crop is in fact worse (Type I error), vs.

• The lost income by not using the truly better variety (Type II error)
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Topic: Building a statistical model

A statistical model is an empirical relation between:

• one or more responses (“dependent” variables), and

• one or more predictors (“independent” variables).

It summarizes relations and also allows predictions.

• e.g. correlation, regression, classification, ordination . . .
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A provocative example

Reference: Tatem et al. Nature 431:525

“Momentous sprint at the 2156 Olympics? Women sprinters are closing the gap on
men and may one day overtake them”
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Questions about this example

1. How to interpret this graph? (i.e. read the axes, say in words what the graph
shows)

2. What conclusions can we draw from it?

(a) Within the time period of observations (interpolation)
(b) For the future (extrapolation)

3. How can we explain the interpretation? I.e. what could be the causes of the
observations and fitted model?

4. Is there reason to suspect the extrapolation?

(a) From internal evidence (model fit)
(b) From external evidence (real-world knowledge)
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Partial answers

1. The graph shows:

(a) At every Olympics, men have been faster than women;
(b) Both men and women are improving;
(c) Women are improving faster than men;
(d) The improvement is linear (no other curve shape has a better parsimonious fit);
(e) The linear fit is better for men than for women (R2) because (a) the women’s

times are more variable around the line; (b) women have participated in fewer
Olympics

(f) Some interesting details of individual performances.
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Steps in modelling

1. Selecting a functional form, i.e. the model to be fitted;

2. Determining the parameters of the model; this is called calibration or
parameter estimation;

3. Determining how well the model describes reality; this is called validation.

4. Criticising (re-examining) the assumptions and possibly re-cycling.
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The modelling paradigm

Assumptions,
model form,
prior information,

Fitted model,
hypothesis tests,
interval estimates

Formulation Inference
HHj

HHY

Estimation/fitting

Criticism

– after Cook & Weisberg (1982) Residuals and influence in regression

Note criticism of the assumptions, especially model form.
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Structure vs. noise

• Observations = f (Structure, Noise)

• Observations = f (model, unexplained variation)

Observations are a subset of Reality, so:

• Reality = f (Structure, Noise)

• Reality = f (deterministic processes, random variation)

The aim is to match our model with the true deterministic process . . .

. . . and match our estimate of the noise with the actual random variation.

It is equally an error to model the noise (over-fit the model) as to not model the
process (under-fit the model).
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Evidence that a model is suitable

Two levels of evidence:

1. external to the model:

(a) what is known or suspected about the process that gave rise to the data
(b) this is the connection to the reality that the model is trying to explain or

summarise;
(c) how well the model fits further data from the same population: success of

validation against an independent dataset

2. internal: from the model itself:

(a) how well the model fits the data (success of calibration);
(b) how well the fitted model meets the assumptions of that functional form (e.g.

examination of regression diagnostics).
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Model calibration

(Also called parameter estimation)

Goodness-of-fit: how well the model matches the calibration data.

For linear modelling: R2 (the coefficient of determination), the complement of the
residual sum of squares (RSS) as a proportion of the total sum of squares (TSS):

R2 = 1− RSS
TSS

RSS =
n∑

i=1

(zi − ẑi)2

TSS =
n∑

i=1

(zi − z̄)2

where ẑi is the predicted (modelled) value and z̄ is the mean response.
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Parsimony

• Principle: the simplest relation that explains the data is the best

• especially applicable in multiple regression models

* unadjusted R2 → 1 as more predictors are added

* but some of this is fitting noise, not relation
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Fit vs. parsimony
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true relation: y = 1 + 2x
linear fit: y = 0.56 + 2.09 x
quadratic fit
cubic fit
6th−order fit
9th−order fit

Raw and adjusted R^2, AIC
0.901, 0.892, 67.7
0.901, 0.881, 69.7
0.927, 0.902, 67.8
0.950, 0.899, 68.9
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true relation: y = 1 + 2x
linear fit: y = 1.67 + 2 x
quadratic fit
cubic fit
6th−order fit
9th−order fit

Raw and adjusted R^2, AIC
0.875, 0.864, 69.9
0.875, 0.850, 71.8
0.885, 0.847, 72.8
0.946, 0.891, 69.1
0.963, 0.850, 70.2

Same true relation, different noise → different empirical fits

Higher-order fits always have lower R2; this is compensated by the adjustment.
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Correcting for over-fitting

For linear models, use the adjusted R2 in place of the un-adjusted coefficient of
determination.

This decreases the apparent R2, computed from the ANOVA table, to account for
the number of predictive factors:

R2
adj ≡ 1− (1− R2)

n− 1
n− k− 1

The proportion of variance not explained by the model (1− R2) is increased with
the number of predictors k. As n, the number of observations, increases, the
correction decreases.

Can also use information-theoretic measures, e.g. the Akaike Information
Criterion (AIC).
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Model validation

Given an independent sample, apply the model and compare the predictions (ŷi)
with reality (yi):

• Root mean squared error (RMSE) of the residuals: the actual (observed) less
the estimate (from the model) in the validation dataset; lower is better:

RMSE =

1
n

n∑

i=1

(ŷi −yi)2



1/2

• Bias or mean error (ME) of estimated vs. actual mean of the validation dataset;
should be zero (0) if the model was supposed to be unbiased:

ME = 1
n

n∑

i=1

(ŷi −yi)

• Gain of the least-square fit of estimated vs. actual data; this should be 1,
otherwise the estimate does not increase at the same rate as the actual data.
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Validation against a 1:1 line
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To be continued . . .

There is much more to this story!!
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