Comprehensive Assessment of Soil Health

The Cornell Framework Manual

B.N. Moebius-Clune, D. J. Moebius-Clune, B.K. Gugino, O.J. Idowu, R.R. Schindelbeck, A.J. Ristow, H.M. van Es, J.E. Thies, H. A. Shayler, M. B. McBride, D.W. Wolfe, and G.S. Abawi

Third Edition

Cornell University

School of Integrative Plant Science

(SIPS)

Soil and Crop Sciences Section

232 Emerson Hall Ithaca, New York 14853 <u>http://www.scs.cals.cornell.edu</u> 2016 by Cornell University All rights reserved. Published September, 2016.

It is the policy of Cornell University actively to support equality of educational and employment opportunities. No person shall be denied employment on the basis of any legally prohibited discrimination involving, but not limited to, such factors as race, color, creed, religion, national or ethic origin, sex, sexual orientation, age, or handicap. The University is committed to the maintenance of affirmative-action programs that will assure the continuation of such equality of opportunity.

ISBN 0-967-6507-6-3

How to Order a Copy

Hardcopy (for purchase):

Contact:

Jenn Thomas-Murphy Extension Support Specialist Soil and Crop Sciences Section 237 Emerson Hall, Ithaca, NY 14853 USA Phone: 607 255-2177 Email: jnt3@cornell.edu

Electronic copy (download):

PDF file(s) are available to download at <u>bit.ly/SoilHealthTrainingManual</u>

Cover photo: Troy Bishopp

Book design and layout: Bianca Moebius-Clune and Aaron Ristow

Unless otherwise noted, the photos were taken by authors, soil health team members and collaborators.

Funding

Cornell University Cooperative Extension

Markets & Food

Funding for the preparation of this manual was provided by: Cornell University, Cornell Cooperative Extension, USDA-NRCS, Northern New York Agricultural Development Program, USDA Northeast Region SARE, NY Farm Viability Institute, New Hampshire Charitable Foundation, NH Department of Agriculture, Food, and Markets.

Acknowledgements

This is the 3rd edition of the manual previously titled "Cornell Soil Health Assessment Training Manual".

The 3rd Edition Publication Team:

- Bianca N. Moebius-Clune, formerly Soil and Crop Sciences, Cornell University, Ithaca NY; now Soil Health Division, USDA Natural Resources Conservation Service
- · Daniel J. Moebius-Clune, formerly Soil and Crop Sciences, Cornell University, Ithaca, NY
- · Robert R. Schindelbeck, Soil and Crop Sciences, Cornell University, Ithaca, NY
- · Harold M. van Es, Soil and Crop Sciences, Cornell University, Ithaca, NY
- · Aaron J. Ristow, Soil and Crop Sciences, Cornell University, Ithaca, NY

Thanks:

We would like to thank the Cornell Soil Health Team members and collaborators, including growers, extension educators, faculty, staff, non-profit, and governmental organizations, for their many contributions to the research and outreach activities conducted over the years since 2003. Their contributions provided the foundation on which this manual is based.

We acknowledge the contributions of Aubrey Fine for her work on the 2016 national scoring function updates and the preliminary development of regional scoring functions for physical and biological indicators.

We would like to thank Gordon Holloway for his significant input on book design and layout.

Many thanks to Kirsten Kurtz and Jenn Thomas-Murphy for designing the Comprehensive Assessment of Soil Health logo and other valuable contributions to this manual.

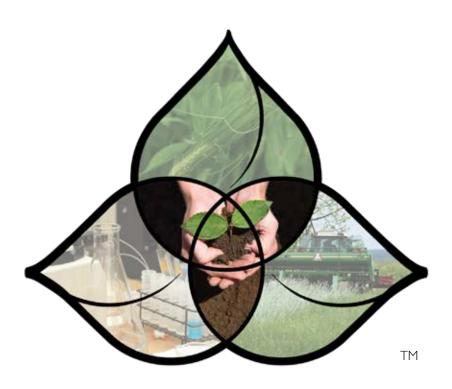
We would like to especially acknowledge the significant contributions of:

Carol MacNeil, Cornell Cooperative Extension (CCE); Mike Rutzke, Kirsten Kurtz, Cornell Nutrient Analysis Laboratory; Cornell Soil Health Laboratory, Dorn Cox, Greenstart, NH; and Brandon Smith, NH NRCS

Past contributors:

John Ludwig, Research Assistant; Kate Duhamel, Research Assistant; Molly Shaw, CCE; Ted Blomgren, Formerly of CCE; Dale Moyer, Formerly of CCE;

Excerpts from Building Soils for Better Crops, 3rd Edition, by Madgdoff and van Es were adapted throughout the manual.


For additional information related to this project and the revision history for this manual please visit the Cornell Soil Health Team's website at: http://soilhealth.cals.cornell.edu

Correct citation:

Moebius-Clune, B.N., D.J. Moebius-Clune, B.K. Gugino, O.J. Idowu, R.R. Schindelbeck, A.J. Ristow, H.M. van Es, J.E. Thies, H. A. Shayler, M. B. McBride, D.W. Wolfe, and G.S. Abawi, 2016. Comprehensive Assessment of Soil Health – The Cornell Framework Manual, Edition 3.1, Cornell University, Geneva, NY.

Comprehensive Assessment of Soil Health Training Manual

Edition 3.1, 2016

Acknowledgements	iv
Introduction	viii
Part I Soil Health Concepts	I
What is soil?	2
Life in the soil	5
What is Soil Health?	12
Characteristics of a healthy soil	13
Common soil constraints	15
Part II Soil Health Assessment	. 19
In-field soil health assessment	20
Development of Cornell 's Comprehensive Assessment of Soil Health	22
Assessment of Soil Health overview	25
Soil sampling protocol	
Materials needed for one sample	
Field sampling design	
Steps for soil sampling	
Soil sample storage requirements	
Soil sample packaging and shipping	
Submission form example	
Regulated soils	
Soil Health scoring functions	
Regional updates	32
Cumulative normal distribution	33
CASH summary report page example	35
Scoring types	36
Soil Health Indicator Protocols and Scoring	37
Soil Texture	37
Available Water Capacity	39
Surface and Subsurface Hardness	41
Wet Aggregate Stability	44
Organic Matter	47
Soil Protein Index	49
Soil Respiration	51
Active Carbon	
Standard Nutrient Analysis	55

Soil Health Indicator Protocols and Scoring cont.
Add-on Test: Potentially Mineralizable N59
Add-on Test: Root Pathogen Pressure61
Add-on Test: Heavy Metal Contamination64
Add-on Test: Salinity and Sodicity69
Soil Health Assessment Report72
Six parts of the CASH summary report73
Using the Assessment of Soil Health info74
Using the Assessment of Soil Health in Soil Health Management Planning75
Part III Soil Health Management
Soil Health Management Planning Framework80
Six Steps of the Soil Health Management
Planning Process
Soil Health Management Options
and Opportunities
The Soil Health Management Toolbox87
General management considerations
Tillage considerations88
Crop rotation considerations90
Cover cropping considerations92
Organic amendment considerations96
Considerations for adapting to and mitigating climate change98
Part IV Additional Resources
Selected Book and Journal Resources
Selected Web Resources107
Appendix A. Sample 2016 Standard
Package Comprehensive Assessment
of Soil Health Report 110
Appendix B. Soil Health Management
Planning Process Worksheet

Introduction

Soil health, or the capacity of the soil to function, is critical to human survival. Soil health constraints beyond nutrient limitations and excesses currently limit agroecosystem productivity and sustainability, resilience to drought and extreme rainfall, and progress in soil and water conservation. With mounting pressure to produce food, feed, fiber, and even fuel for an increasing population, soil health is gaining national and international attention. Research on both assessment and management of soil health, as well as farmers' innovations in soil health management approaches have matured over the decades. Multiple regional, national, and global efforts are now leveraging that work to reach new stakeholder audiences, so that soil health management is expanding into mainstream agriculture. Public recognition of the critical importance of maintaining and rebuilding healthy soils for long term sustainable agricul-

is much more to be done.

The more comprehensive assessment of soil health described in this manual is available to the public on a fee-for-service basis, and provides field-specific information on constraints in biological and physical processes, in addition to standard soil nutrient analysis (soilhealth.cals.cornell.edu/). In essence, the assessment expands on a well understood approach that has been foundational to high agricultural productivity. Just as standard soil testing has informed nutrient management based on identified deficiencies and excesses since the 1900s, the assessment developed here, similarly, identifies constraints to biological and

physical soil functioning. This information then guides land managers in making targeted management decisions to plan and implement systems of soil health management practices to alleviate identified constraints and maintain healthier soils. The current (2016) version of the assessment and its interpretive scoring was developed for the Northeastern United States. However, the concepts, framework and indicators for soil health

tural production is growing. But while much progress has been made, there

assessment and management planning described here can be expanded and adapted for national and global applications. The most relevant components of the framework are 1) measurement of indicators that represent critical soil processes, 2) scoring of measured values that allows for interpretation, and 3) linkage of identified constraints with management practices. The main benefit of this approach is that the identification of physical biological and chemical constraints prompts farmers to seek improved and more sustainable soil and crop management practices. We hope that this framework will evolve and be used widely to measure and monitor soil health status. It is expected that a more comprehensive understanding of soil health status can lead to better, regenerative, and sustainable management of soils through holistic, adaptive, and data-driven approaches. This manual is laid out in four parts:

- I. Soil Health Concepts (1–18)
- II. Soil Health Assessment (19–78)
- III. Soil Health Management (79–101)
- IV. Additional Resources (102–108)

The purpose of this manual is to:

- Provide an overview of soil health concepts.
- Provide an overview of Cornell University laboratory methods used to assess the health status of soil, the report generated from this more comprehensive assessment of soil health, and its interpretation.
- Present a framework for soil health management planning and implementation based on information gained from soil health assessment that can be adapted for use in other land management systems, soils, and climates.
- Provide a brief overview of in-field qualitative soil health assessment.
- Provide a how-to guide for proper soil health sampling.
- Describe soil constraints and soil health issues common to soils in the Northeast region, especially in vegetable and field crop production systems.
- Identify management strategies for improving soil health based on measured constraints.
- Provide guidelines for standardized and quantitative laboratory-based soil health assessment.
- Provide links to additional soil health assessment and management resources.