Soil Water

3 Phases

Solid

Liquid

Gas

Bent Molecule

Neutral, but POLAR

Polarity controls movement and retention in soil

1. COHESION

(hydrogen bonding)

 responsible for POLYMERIZATION

- accounts for relatively high BOILING POINT SPECIFIC HEAT VISCOSITY SURFACE TENSION

responsible for capillary rise

Meniscus - curved air/ water interface

A = adhesionC = cohesion

Capillarity is caused by:

ADHESION - attraction of water molecules to walls of tube

COHESION - attraction of water molecules to each other, producing surface tension.

SOIL ANALOGY - pores in moist soils behave like thin tubes, hold water by capillarity.

2 Stages of Water Movement

1) Infiltration

2) Subsurface Water Flow

Forms of Water Potential – Ψ

Ψ_{G} Gravitational Potential (+ value)

- determined by the height of water above a reference point

- water flows downward under gravity

Ψ_M Matric Potential (- value)

- determined by the strength of the attraction of water to the soil matrix
- most important for unsaturated flow (dry soils)

- water flows from zones of wet soil to zones of dry soil (less negative → more negative)

$\Psi_{\rm S}$ Solute (Osmotic) Potential (- value)

- determined by the concentration of solutes in the soil water

- more negative for high solute concentrations

- water flows from zones of low solute to high solute concentrations

- most important for root-water interaction
- $\Psi_{\rm P}$ Pressure Potential (+ or value)

- determined by amount of pressure imposed on soil water

- usually zero, but there are exceptions

Flooded Soils

Soils with water tables – ie artesian wells

$\Psi_{\text{TOTAL}} = \Psi_{g} + \Psi_{m} + \Psi_{s} + \Psi_{p}$

2 Stages of Water Movement

1) Infiltration

2) Subsurface Water Flow

Infiltration Rate ~ cm/hr

in general

```
Infiltration rate = hydraulic conductivity x \frac{\Delta \Psi}{\Delta X}
```

Hydraulic Conductivity is:

a measure of characteristics unique to each soil type which affects water flow

it is a function of:

1) soil water content

2) size distribution and tortuosity of pores

Figure 5.27

Volumetric Water Content -

 volume of water in soil relative to total soil volume

$$\theta = \frac{V_W}{V_T} = \frac{V_W}{V_S^+ V_P}$$

- θ (saturated) = 40-50% (sands) \geq 50% (clays)
- θ (saturated) depends on total porosity

Importance of Water Content -

- impact on plant growth --> too little, too much
- effects on physical properties -->
 strength, plasticity,
 compactibility, trafficability, etc.

WATER MOVEMENT IN SOILS

Infiltration - entry of water into soils

Infiltration rate - depth of water entering soil in a unit of time (e.g. cm/hr)

Factors influencing infiltration rate:

- 1. Height of water column above soil
- 2. Number & size of soil pores
- 3. Water content of soil
- 4. Nature of soil <u>surface</u>

Sandy Soils - rapid infiltration rates (Why?) Clays, Clay Loams - slow infiltration rates (Why?)

GRAVITATIONAL POTENTIAL Ψg

energy of water that is potentially available to be released when water moves from a high position to a lower position.

e.g. water flowing downward under force of gravity.

Reference Point - base of soil profile bottom of rooting zone

 Ψ g is a positive value

2 Stages of Water Movement

1) Infiltration

2) Subsurface Water Flow

Saturated Flow

- occurs when pores are water-filled
- most rapid in larger pores (e.g. sands)
- flow in response to potential gradients:

Gravity (Ψ_G) & Pressure (Ψ_P)

- water drains freely from large pores by gravity and pressure Ψ 's

Unsaturated Flow

- more common that saturated flow
- more important than saturated flow?
- controlled by Matric Potential (Ψ_{M})
- movement from areas of less negative to more negative potential

MATRIC POTENTIAL Ψm

- second main force of water retention
- due to adhesion (polarity)
- most important for fairly dry soils, water near particle surface.

Effect of Matric Potential is to reduce the free energy

 Ψ m is a negative value

Capillary Rise

Capillarity is the tendency for water to rise against the gravity Function of Water Adhesion and Cohesion

Figure 5.27

Water Movement vs. Water Storage

The soil matrix retains water against the pull of gravity

- this is controlled by the matric potential ($\Psi_{\rm M}$)
- and is a function of

Capillarity – important in wet soils Adsorption – important when soil is below field capacity

DEGREES OF SOIL WETNESS

()

SATURATED

PERMANENT WILTING POINT

OVEN-DRY

Importance:

Condition for anoxic soils (anaerobic)

Condition of maximum available water after gravitational drainage Condition of plant death Reference point for soil weight

AVAILABLE WATER

Figure 5.34

Solute Potential ($\Psi_{\rm S}$)

- force that acts across a membrane ex. root cell membrane
- due to hydration of ions
- important in saline soils

Effect of is to reduce the free energy

Hydration – attraction of ions to surfaces

Pore Water Composition

 ΔI^{3+} **CATIONS** Ca²⁺, Mg²⁺, K⁺, Na⁺, H⁺ NH_{4}^{+} , Mn^{2+} , etc. Fe^{2+} , Fe^{3+} , etc. ANIONS CI, NO₃, SO₄, H₂PO₄, HPO₄, HCO₃, HCO₃, HCO_3 **ORGANIC COMPOUNDS (dissolved & colloidal)** DISSOLVED GASES (esp. CO_2 , O_2) SUSPENDED CLAY PARTICLES **Composition depends on:** vegetation

- climate
- biological activity
- soil minerals
- time ---> short-term
 seasonal
 long-term

Leaching

Moving water contacts soluble compounds in vegetation or soil moving them through the soil column.

H⁺ ions replace base cations.

"SOLUTES" added to leachate by <u>dissolution</u> and <u>ion exchange</u>.

Nutrient Uptake -

nutrients for microbial and plant growth are taken from the "SOIL SOLUTION"