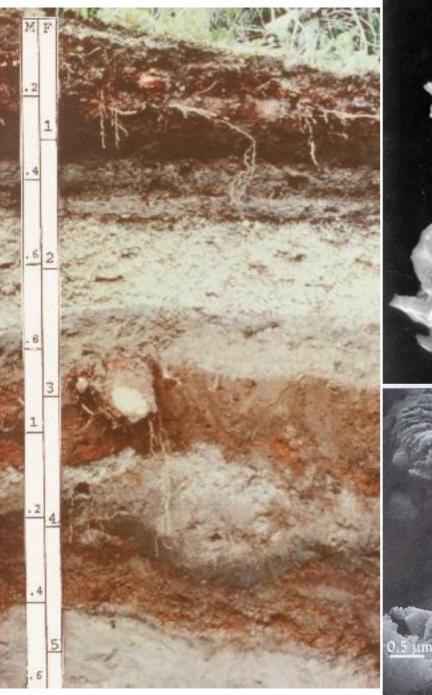
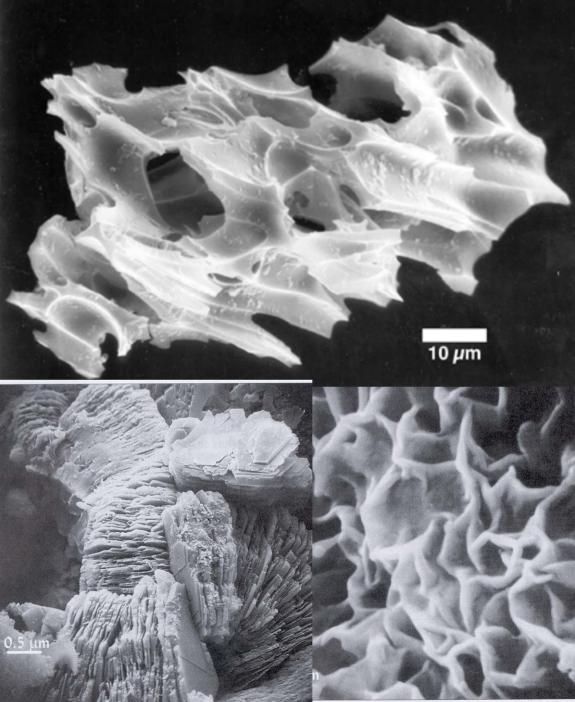
Types of Soil Colloids

- Crystalline silicate clays


 Phylosilicates → tetrahedral and octahedral crystal sheets
- Non-crystalline silicate clays (Andisols)
 Dominantly amorphous clays (allophane and imogolite)
- Iron and aluminum oxides (Oxisols & ...)
 - Dominantly gibbsite (Al-oxide) and goethite (Fe-oxide)
- Organic (humus) colloids (Histosols &...)
 - Non-crystalline colloids dominated by long C-chain molecules

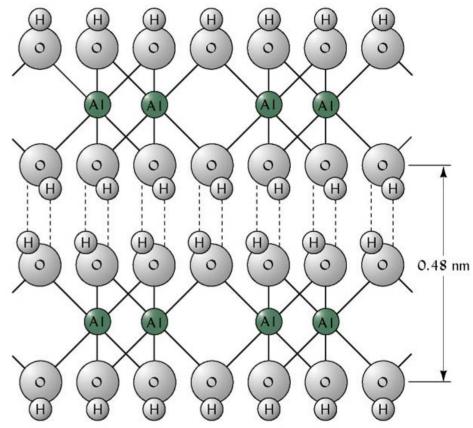

Non-crystalline Silicate Clays Allophane and Imogolite

- 1. Volcanic ash is chemically/mineralogically distinct from most other soil parent materials.
- 2. Composed largely of vitric or glassy materials containing varying amounts of AI and Si.
- 3. It lacks a well-defined crystal structure (i.e., amorphous) and is quite soluble.
 - Allophane and Imogolite are common early-stage residual weathering products of volcanic glass and both have poorly-ordered structures.

Allophane forms inside glass fragments where Si concentration and pH are high and has a characteristic spherule shape.

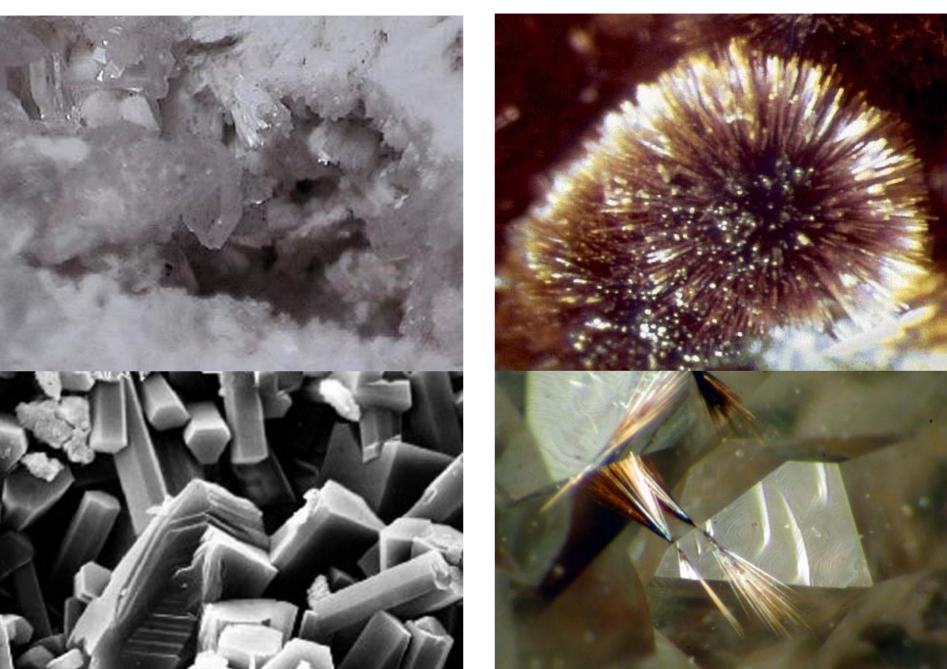
Imogolite tends to form on the exterior of glass fragments under conditions of lower pH and Si concentration, and has a characteristic thread-like morphology.

Iron and Aluminum oxides **Sesquioxides**


Dominantly gibbsite (Al-oxide) and goethite (Fe-oxide)

- 1. Found in many soils
- 2. Especially important in highly weathered soils of warm humid regions
- Consist of mainly either Fe or AI atoms coordinated with O atoms
 the O atoms often associated with H ions to make hydroxyl groups
- 4. Some, such as gibbsite (Al-oxide) and goethite (Fe-oxide), form crystalline sheets
- 5. Others form amorphous coatings on soil particles

Because of surface plane of covalently bonded hydroxyls gives these colloids the capacity to strongly adsorb certain anions

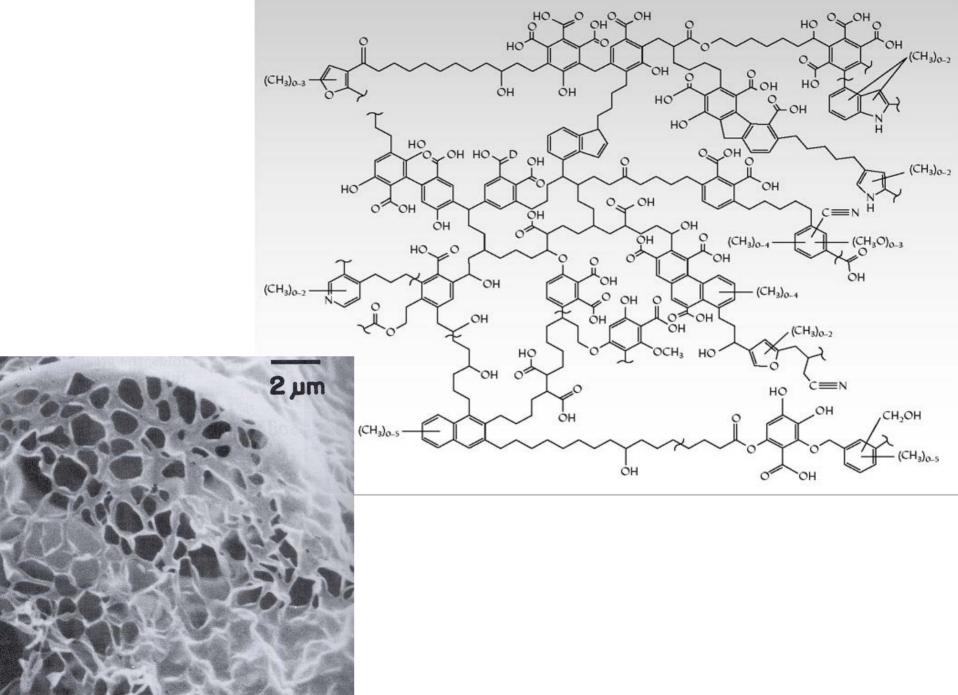


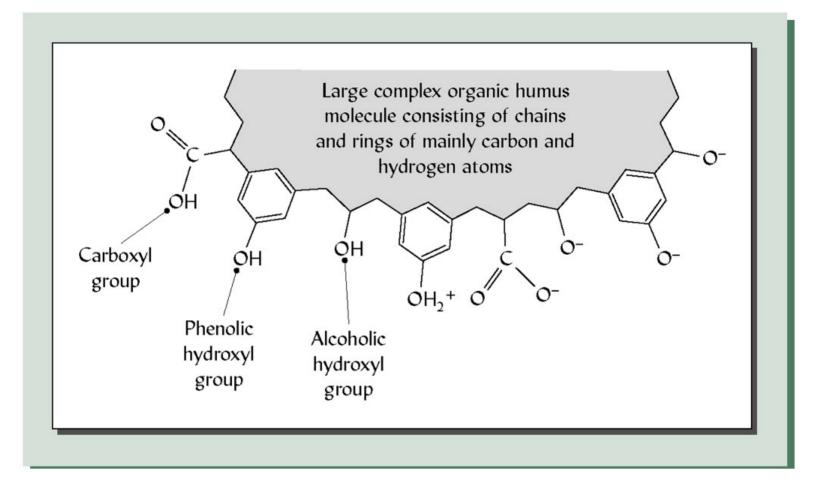
Because of surface plane of covalently bonded hydroxyls gives these colloids the capacity to strongly adsorb certain anions


Gibbsite (Al-oxide)

Goethite (Fe-oxide)

amorphous coatings on soil particles





Organic (humus) colloids Non-crystalline colloids dominated by long C-chain molecules

- Important in nearly all soils 1.
- They are not mineral or crystalline 2. in nature
- Consist of long convoluted chains 3. and rings of Carbon bonded to Hydrogen, Oxygen and Nitrogen
- Very high capacity to adsorb water 4.
 - 5. Have high amounts of both positive and negative charges, but net charge is always negative

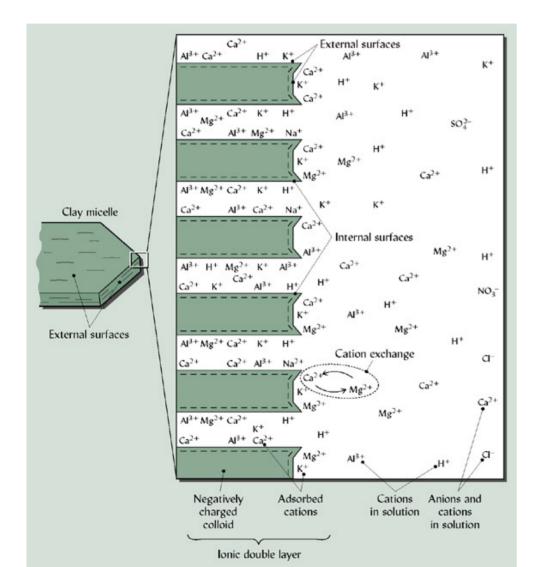
Types of Soil Colloids

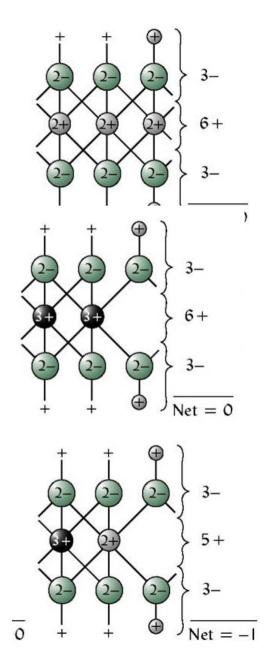
- Crystalline silicate clays
 - Phylosilicates \rightarrow tetrahedral and octahedral crystal sheets
- Non-crystalline silicate clays
 - Dominantly amorphous clays (allophane and imogolite)
- Iron and aluminum oxides
 - Dominantly gibbsite (Al-oxide) and goethite (Fe-oxide)
- Organic (humus) colloids
 - Non-crystalline colloids dominated by long C-chain molecules

TABLE 8.3 Prominent Occurrence of Clay Minerals in Different Soil Orders in the United States and Typical Locations for These Soils

Soil orderª	General weathering intensity	<i>Typical</i> <i>location</i> <i>in U.S.</i>	Fe, Al oxides	Kaolinite	Smectite	Fine- grained mica	Vermiculite	Chlorite	Intergrades
Aridisols	Low	Dry areas			XX	XX		Х	X
Vertisols ^b	▲	Alabama, Texas			XXX				Х
Mollisols		Kansas, Iowa		X	XX	X	Х	X	Х
Alfisols		Ohio, New York		Х	X	х	Х	X	Х
Spodosols		New England	X	Х					
Últisols	¥	Southeast	XX	XXX			Х	х	Х
Oxisols	High	Hawaii, Puerto							
	U U	Rico	XX	XXX					

* See Chapter 3 for soil descriptions.


^b By definition these soils have swelling-type clays, which account for the dominance of smectites.


Sources of Charges on Soil Colloids

- Constant Charge (structural)
 - through Isomorphic substitution
 - both negative and positive charges
 predominately positive
- Variable or pH-Dependent Charge
 - both negative and positive charges
 - primarily associated with hydroxyl (OH) groups
 - Source of charge on humus, Fe & Al oxides, allophane and some phylosilicates.

Adsorption vs. Absorption

Surface bonding vs. internal structure

Cation vs. Anion

Ion: a particle that is electrically charged

an atom or a molecule that has lost or gained one or more electrons...

Cation is a positively charged ion

Anion is a negatively charged ion

Number of electrons in outermost shell

for example:

Cations Na ¹⁺ , Ca ²⁺ , Al ³⁺ or Si ⁴⁺	1 1 H Hydrogen						Atomic number	2 He Helium
	1	2	3 5	6	5	6 8	7	8
Anions	Li Lithium	Be Beryllium	B Boron	C Carbon	Nitrogen	O Oxygen	F Fluorine	Ne Neon
<u>Anions</u> Cl ¹⁻ , O ²⁻ or S ²⁻	11 Na Sodium	12 Mg Magnesium	13 Al Aluminum	14 Si Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Ar Argon
	19 K Potassium	20 Ca Calcium	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	29 Cu Copper	26 Fe Iron	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
	1 *	2	3	4	3	2	1	/ Inert;
	leave a	ctrons to n octet in ower shell				Gain elec comple	trons to te an octet	octet filled

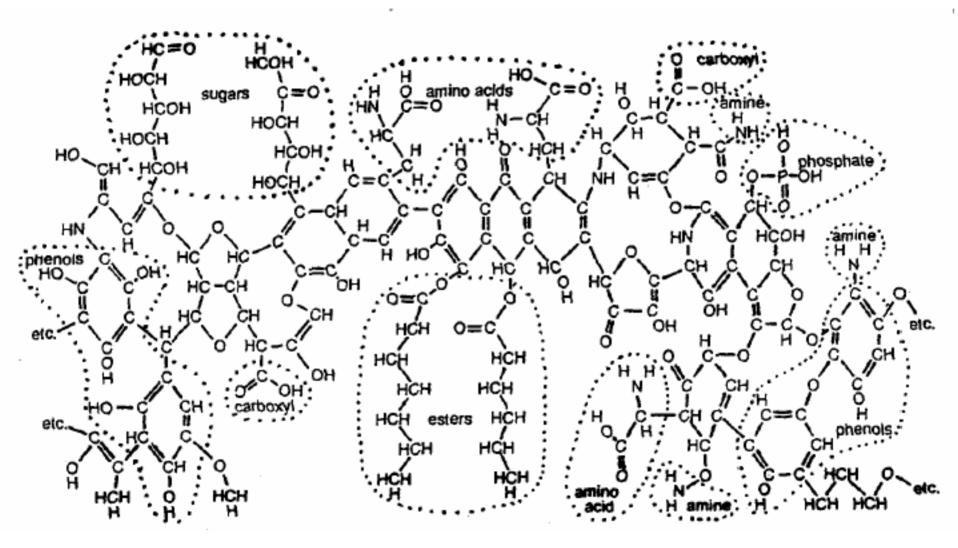
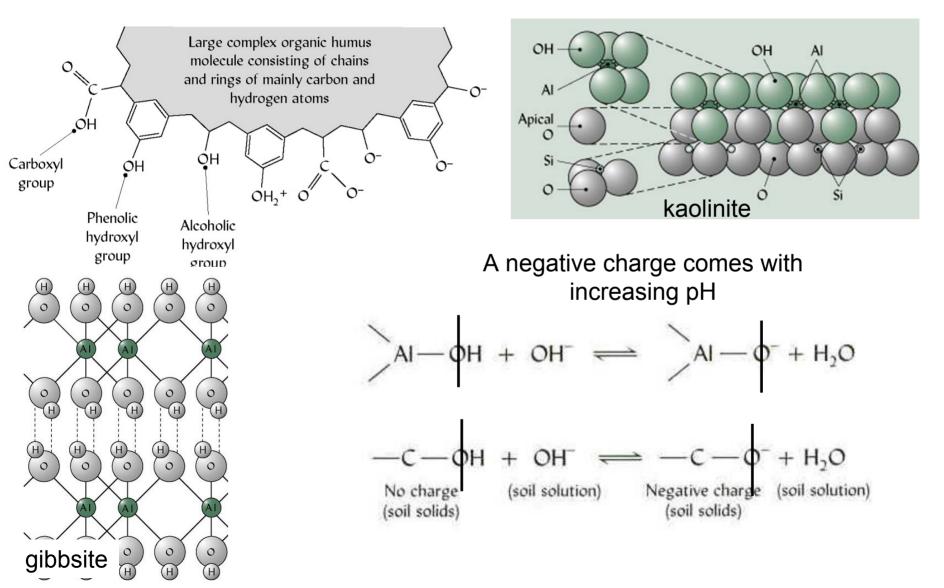

Constant Charge (structural)

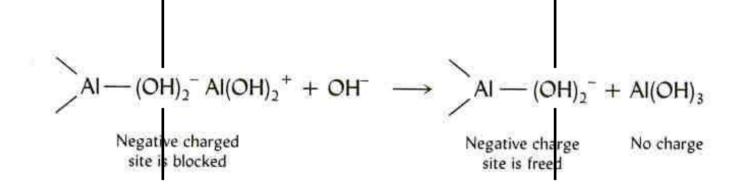
TABLE 8.4 Typical Unit Layer Formulas of Several Clay and Other Silicate Minerals Showing Octahedral and Tetrahedral Cations as Well as Coordinating Anions, Charge per Unit Formula, and Fixed and Exchangeable Interlayer Components

Note that the charge per unit formula is the sum of the charges on the octahedral and tetrahedral sheets and that this negative charge is counterbalanced by equivalent positive charges in interlayer areas.

	Octahedral	Tetrahedral	Coordinating	Charge per unit	Interlayer components		
Mineral	sheet	sheet	anions	formula	Fixed	Exchangeable	
1:1-Type	199-52	and the			Sector of	54 - 21 H	
Kaolinite (dioctahedral)	Al_z	Siz	$O_5(OH)_4$	0	None	None	
Serpentine (trioctahedral) 2:1-Type Dioctahedral Minerals	Mg ₃	Si ₂	$O_5(OH)_4$	0	None	None	
Pyrophyllite	AI_2	Si ₄	O10(OH)2	0	None	None	
Montmorillonite	Al _{1.7} Mg _{0.3} -0.3	Si _{3.9} Al _{0,1} i -0.1	O ₁₀ (OH) ₂	-0.4 个	None	M [*] _{0.4}	
Beidellite	Al ₂	Si _{3.6} Al _{0.4} -0.4	O10(OH)2	-0.4	None	$M_{0.4}^{+}$	
Nontronite	Fe ₂	Si _{3.6} Al _{0.4} -0.4	O10(OH)2	-0.4	None	M _{0.4}	
Vermiculite	Al _{1.7} Mg _{0.3} -0.3	Si _{3.6} Al _{0.4} -0.4	O10(OH)2	-0.7	xH ₂ O	M _{0.7}	
Fine mica (illite)	Al ₂	Si _{3.2} Al _{0.8} -0.8	O10(OH)2	-0.8 个	K [*] _{0.7}	$M_{0,1}^{+}$	
Muscovite	Al_2	Si ₃ Al -1.0	O10(OH)2	-1.0	K-	None	
2:1-Type Trioctahedral Minerals							
Talc	Mg ₃	Si ₄	O10(OH)2	0	None	None	
Vermiculite	$Mg_{2.7}Fe_{0.3}^{3+}$ +0.3	Si ₃ Al -1.0	O10(OH)2	-0.7	хH ₂ O	M [*] _{0.7}	
Chlorite	$Mg_{2.6}Fe_{0.4}^{3+}$ + 0.4	Si _{2.5} (Al,Fe) _{1.5} -1.5	O10(OH)2	-1.1	$Mg_2Al(OH)_6^{\ast}$	$M_{0.1}^{*}$	

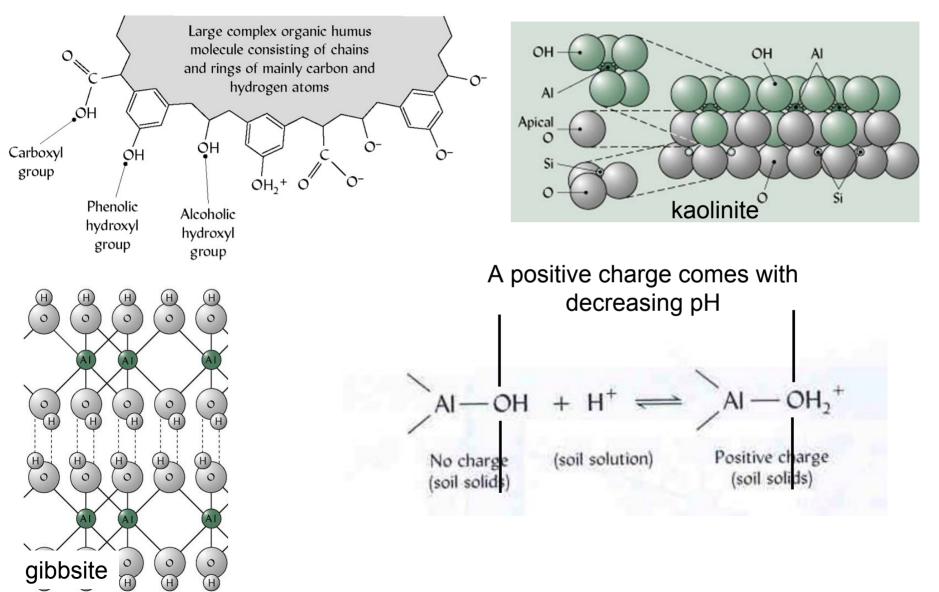
* Exchangeable cations such as Ca2+, Mg2+, and H+ are indicated by the singly charged cation M+.



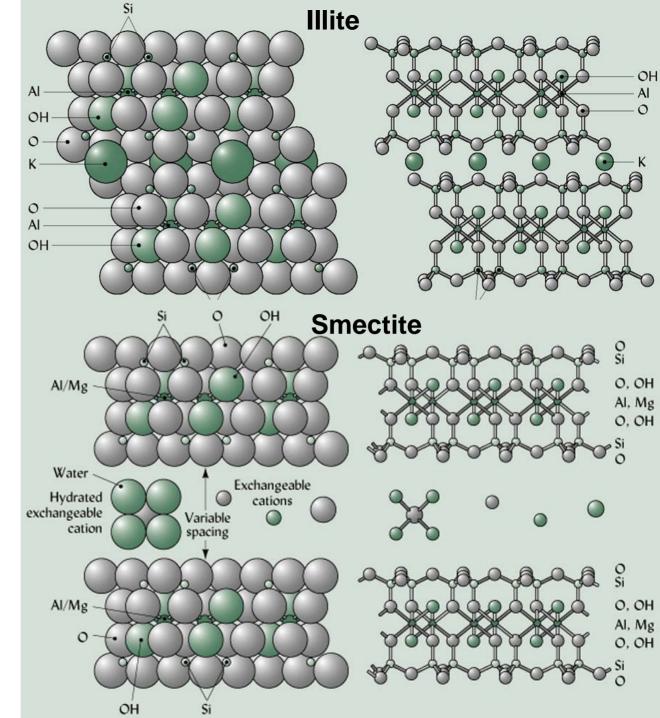

Sources of Charges on Soil Colloids

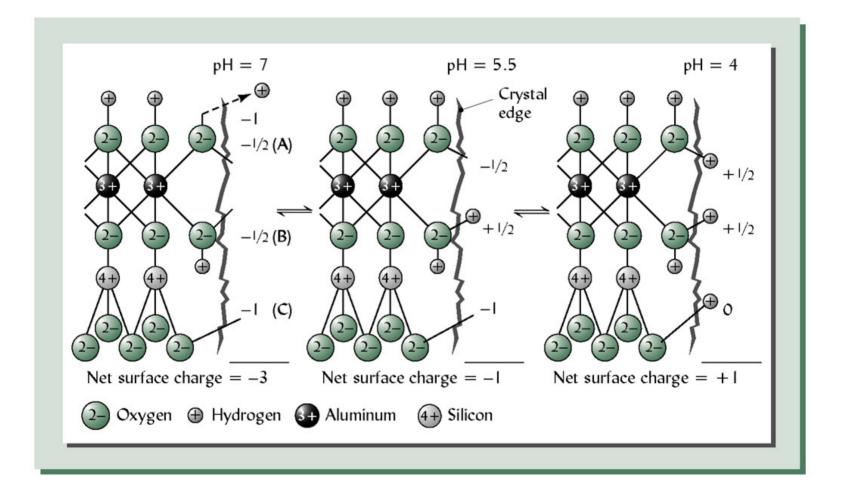
- Variable or pH-Dependent Charge
 - both negative and positive charges
 - primarily associated with hydroxyl (OH) groups
 - Source of charge on humus, Fe & Al oxides, allophane and some phylosilicates.

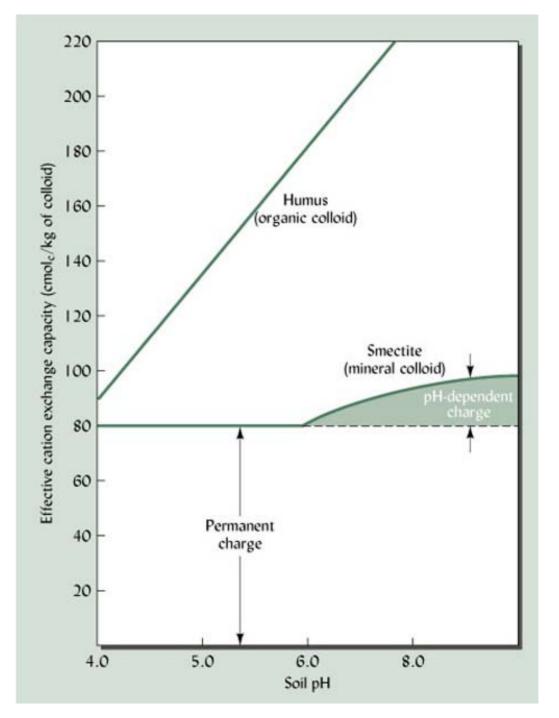
Variable or pH-Dependent Charge


via protonation / deprotonation of hydroxyl groups

Variable or pH-Dependent Charge


via protonation / deprotonation of hydroxyl groups


Why is the pH dependent charge only associated with some phylosilicates?


The charge is associated with the Hydroxyl groups (which is on the octahedral sheet of 1:1, 2:1 and 2:1:1 layers),

BUT is ONLY EXPOSED on the edge of phylosilicates and the face of 1:1 phylosilicates

The Real Edge Effect!

