Soil is 3-phase system: SOLIDS, LIQUIDS, GASES

SOIL AIR

Not identical to atmospheric air because of biological respiration:

$$C_6H_{12}O_6 + 6O_2 ---> 6CO_2 + 6H_2O$$

- 1. CONSUMES OXYGEN (O2)
- 2. PRODUCES CARBON DIOXIDE (CO₂)

Composition of Atmosphere & Aerated Soil

Gas	Soil air (%)	Atmosphere
N_2	79.2	79.0
02	20.6	20.9
CO2	0.25	0.035

Oxygen is necessary for many organisms to live.

Soil air is almost always saturated with water vapor (R.H. = 99-100%)

AIR MOVEMENT - 2 mechanisms:

<u>DIFFUSION</u> - molecules move from zone of high concentration to low

Rate of Diffusion depends on:

- 1. Soil water content
- 2. Size & number of pores
- 3. Pore continuity
- 4. Temperature

MASS FLOW - movement in response to change in pressure in soil <u>or</u> atmosphere

less important than diffusion

Saturated soils quickly become O₂-deficient (Why?)

Plant roots & aerobic microbes die

AIR-WATER RELATIONSHIPS

Total air volume in soil is THE difference between total pore space and volumetric water content.

$$P_A = P_T - O$$

P_A = fraction of total soil volume occupied by air

P_T = total soil volume composed of pores (porosity)

Θ = fraction of total soil volume occupied by water

$$\Theta \approx O$$
 $P_A = .5$
 $P_T = .5$

$$\Theta = .25$$
 $P_A = .25$
 $P_T = .5$

dry

wet

Saturated soils have little or no air in their pores.

Saturation can be:

Temporary - e.g. rainstorm, irrigation, snow melt (days ---> weeks)

Lack of oxygen produced ANAEROBIC (ANOXIC) conditions, in which only anaerobic microorganisms are active.

AEROBIC MICROBES

- require O₂
- produce CO₂

ANAEROBIC MICROBES

- do not require O₂
- produce methane, nitrous oxide, hydrogen sulfide (CH₄, N₂O, H₂S)

IT'S ALL ABOUT ENERGY! And it's a REDOX reaction

Respiration is a redox process in which O_2 serves as an electron acceptor.

Aerobic respiration

Anaerobic respiration

$$CH_2O + 2Fe_2(III)O_3 + 7CO_2 + 3H_2O \rightarrow 4Fe(II) + 8HCO_3^-$$

Oxidation / Reduction Potential (Redox)

• The redox potential (E_h) is the potential of a substance to accept or donate an electron (e^-)

$$\begin{array}{c}
(2+) & (3+) \\
2\text{FeO} + 2\text{H}_2\text{O} \leftrightarrow 2\text{FeOOH} + 2\text{H}^+ + 2e^- \\
(0) & (2-) \\
1/2 \text{ O}_2 + 2\text{H}^+ + 2e^- \leftrightarrow \text{H}_2\text{O} \\
2\text{FeO} + 1/2 \text{ O}_2 + \text{H}_2\text{O} \leftrightarrow 2\text{FeOOH}
\end{array}$$

- Free electrons do not exist in aqueous solns
- Reduction/oxidation occur simultaneously

Redox

- •E_h is the redox potential (volts)
- Measures the tendency of a substance to donate or accept an electron
- Related to a reference state (half reaction)

$$H^+ = e^- + 1/2 H_2$$
 (arbitrarily taken at zero)

•More positive the E_h the easier the substance can be used as an terminal electron acceptor

-.50

-.40

-.30

-.20

-.10

0.0

+.10

+.20

+.30

Electron Tower

$$CO_2/CH_2O (-.43)$$

 $2H^+/H_2 (-.42)$
 $S^0/H_2S (-.22)$
 $NO_3^-/NO_2^- (+.42)$

 $NO_3^{-}/N_2^{-}(+.74)$

Fe₃+/Fe₂+ (+.76) ½ O₂/H₂O (+.82 Oxidation / Reduction Pairs

- where first in pair is oxidizer (accepts e-)

- and second in pair is reduced (donates e-)

Due to energy required to build molecules, strong edonors are found at the top of tower, while strong edoceptors are found at the bottom of tower.

+.40

+.50

+.60

+.70

+.80

+.90

Therefore the amount of potential energy released by coupled redox reactions, is greatest the farther the e- "falls"

Table 7.1. Standard-State Reduction Potentials of Half-Reactions Involving Important Elements in Soils

Reaction	E_h^0 (volts)
$Mn^{3+} + e^- = Mn^{2+}$	1.51
$MnOOH(s) + 3H^+ + e^- = Mn^{2+} + 2H_2O$	1.45
$%NO_3^- + %H^+ + e^- = %N_2(g) + %H_2O$	1.245
$\frac{1}{2}MnO_{2}(s) + 2H^{+} + e^{-} = \frac{1}{2}Mn^{2+} + H_{2}O$	1.23
$\frac{1}{2}O_2(g) + H^+ + e^- = \frac{1}{2}H_2O$	1.229
$Fe(OH)_3(s) + 3H^+ + e^- = Fe^{2+} + 3H_2O$	1.057
$\frac{1}{2}NO_{3}^{-} + H^{+} + e^{-} = \frac{1}{2}NO_{2}^{-} + \frac{1}{2}H_{2}O$	0.834
$Fe^{3+} + e^{-} = Fe^{2+}$	0.711
$\frac{1}{2}O_2(g) + H^+ + e^- = \frac{1}{2}H_2O_2$	0.682
$48O_1^{2-} + 4H^+ + e^- = 4H_2S + 4H_2O$	0.303
$4N_2(g) + 4H^+ + e^- = 4NH^+$	0.274
$\text{CO}_2(g) + \text{H}^+ + e^- = \text{CH}_4(g) + \text{H}_2O$	0.169
$H^+ + e^- = \frac{1}{2}H_2(g)$	0.000

The E_h^0 can be converted to the equilibrium constant for the half-reaction, K, using the equation $E_h^0 = (0.059/n) \log K$. M. McBride, 1994

TABLE 7.3 Oxidized and Reduced Forms of Several Important Elements

Element	Normal form in well-oxidized soils	Reduced form found in waterlogged soils
Carbon	CO ₂ , C ₆ H ₁₂ O ₆	CH ₄ , C ₂ H ₄ , CH ₃ CH ₂ OH
Nitrogen	NO_3^-	N_2 , NH_4^+
Sulfur	SO ₄ ² -	H_2S , S^{2-}
Iron	Fe ³⁺ [Fe(III) oxides]	Fe ²⁺ [Fe(II) oxides]
Manganese	Mn^{4+} [Mn(IV) oxides]	Mn2+ [Mn(II) oxides]

Oxidized form	Reduced form	Eh at which change of form occurs, V
O ₂	H ₂ O	0.38 to 0.32
NO_3	N_2	0.28 to 0.22
Mn ⁴⁺	Mn ²⁺	0.22 to 0.18
Fe ³⁺	Fe ²⁺	0.11 to 0.08
SO ₄ ² -	S ²⁻	-0.14 to -0.17
CO_2	CH ₄	-0.20 to -0.28

From Patrick and Jugsujinda (1992).

- · Soil values:
- E_h = 0.4 to 0.60 volts (well drained soil)
- E_h = 0.3 to 0.35 volts (flooded, O₂ reduced)
- $E_h = 0.25$ to -0.3 volts (prolonged flooding)

Redox

- Redox sequence in waterlogged soils
 - O₂ depleted due to displacement by H₂O, low H₂O solubility and consumption by biological activity
 - Soil becomes anaerobic and microbes must use other substances as TEA
 - pH rises because most redox reactions consume protons
 - NO₃ ---> N₂ (denitrification)

Ecological Importance of Soil <u>Aeration</u>

- OM degradation
 - Fastest under oxidized conditions
 - Toxic by-products may accumulate (reduced)
 - · Ethylene gas, alcohols, and organic acids
- Redox of elements
 - Nutrients (Fe³⁺ vs. Fe²⁺, SO₄²⁻ vs. S²⁻)
 - Toxic elements
 - Soil colors
 - CH₄ production
 - Plant growth