Soil is 3-phase system: SOLIDS, LIQUIDS, GASES ### **SOIL AIR** Not identical to atmospheric air because of biological respiration: $$C_6H_{12}O_6 + 6O_2 ---> 6CO_2 + 6H_2O$$ - 1. CONSUMES OXYGEN (O2) - 2. PRODUCES CARBON DIOXIDE (CO₂) ### Composition of Atmosphere & Aerated Soil | Gas | Soil air (%) | Atmosphere | |-------|--------------|-------------------| | N_2 | 79.2 | 79.0 | | 02 | 20.6 | 20.9 | | CO2 | 0.25 | 0.035 | Oxygen is necessary for many organisms to live. Soil air is almost always saturated with water vapor (R.H. = 99-100%) ### **AIR MOVEMENT** - 2 mechanisms: <u>DIFFUSION</u> - molecules move from zone of high concentration to low ### Rate of Diffusion depends on: - 1. Soil water content - 2. Size & number of pores - 3. Pore continuity - 4. Temperature MASS FLOW - movement in response to change in pressure in soil <u>or</u> atmosphere less important than diffusion Saturated soils quickly become O₂-deficient (Why?) Plant roots & aerobic microbes die ### **AIR-WATER RELATIONSHIPS** Total air volume in soil is THE difference between total pore space and volumetric water content. $$P_A = P_T - O$$ P_A = fraction of total soil volume occupied by air P_T = total soil volume composed of pores (porosity) Θ = fraction of total soil volume occupied by water $$\Theta \approx O$$ $P_A = .5$ $P_T = .5$ $$\Theta = .25$$ $P_A = .25$ $P_T = .5$ dry wet Saturated soils have little or no air in their pores. #### Saturation can be: Temporary - e.g. rainstorm, irrigation, snow melt (days ---> weeks) Lack of oxygen produced ANAEROBIC (ANOXIC) conditions, in which only anaerobic microorganisms are active. #### **AEROBIC MICROBES** - require O₂ - produce CO₂ ### **ANAEROBIC MICROBES** - do not require O₂ - produce methane, nitrous oxide, hydrogen sulfide (CH₄, N₂O, H₂S) # IT'S ALL ABOUT ENERGY! And it's a REDOX reaction Respiration is a redox process in which O_2 serves as an electron acceptor. ### Aerobic respiration ### Anaerobic respiration $$CH_2O + 2Fe_2(III)O_3 + 7CO_2 + 3H_2O \rightarrow 4Fe(II) + 8HCO_3^-$$ ## Oxidation / Reduction Potential (Redox) • The redox potential (E_h) is the potential of a substance to accept or donate an electron (e^-) $$\begin{array}{c} (2+) & (3+) \\ 2\text{FeO} + 2\text{H}_2\text{O} \leftrightarrow 2\text{FeOOH} + 2\text{H}^+ + 2e^- \\ (0) & (2-) \\ 1/2 \text{ O}_2 + 2\text{H}^+ + 2e^- \leftrightarrow \text{H}_2\text{O} \\ 2\text{FeO} + 1/2 \text{ O}_2 + \text{H}_2\text{O} \leftrightarrow 2\text{FeOOH} \end{array}$$ - Free electrons do not exist in aqueous solns - Reduction/oxidation occur simultaneously ### Redox - •E_h is the redox potential (volts) - Measures the tendency of a substance to donate or accept an electron - Related to a reference state (half reaction) $$H^+ = e^- + 1/2 H_2$$ (arbitrarily taken at zero) •More positive the E_h the easier the substance can be used as an terminal electron acceptor -.50 -.40 -.30 -.20 -.10 0.0 +.10 +.20 +.30 ### **Electron Tower** $$CO_2/CH_2O (-.43)$$ $2H^+/H_2 (-.42)$ $S^0/H_2S (-.22)$ $NO_3^-/NO_2^- (+.42)$ $NO_3^{-}/N_2^{-}(+.74)$ Fe₃+/Fe₂+ (+.76) ½ O₂/H₂O (+.82 Oxidation / Reduction Pairs - where first in pair is oxidizer (accepts e-) - and second in pair is reduced (donates e-) Due to energy required to build molecules, strong edonors are found at the top of tower, while strong edoceptors are found at the bottom of tower. +.40 +.50 +.60 +.70 +.80 +.90 Therefore the amount of potential energy released by coupled redox reactions, is greatest the farther the e- "falls" **Table 7.1.** Standard-State Reduction Potentials of Half-Reactions Involving Important Elements in Soils | Reaction | E_h^0 (volts) | |---|-----------------| | $Mn^{3+} + e^- = Mn^{2+}$ | 1.51 | | $MnOOH(s) + 3H^+ + e^- = Mn^{2+} + 2H_2O$ | 1.45 | | $%NO_3^- + %H^+ + e^- = %N_2(g) + %H_2O$ | 1.245 | | $\frac{1}{2}MnO_{2}(s) + 2H^{+} + e^{-} = \frac{1}{2}Mn^{2+} + H_{2}O$ | 1.23 | | $\frac{1}{2}O_2(g) + H^+ + e^- = \frac{1}{2}H_2O$ | 1.229 | | $Fe(OH)_3(s) + 3H^+ + e^- = Fe^{2+} + 3H_2O$ | 1.057 | | $\frac{1}{2}NO_{3}^{-} + H^{+} + e^{-} = \frac{1}{2}NO_{2}^{-} + \frac{1}{2}H_{2}O$ | 0.834 | | $Fe^{3+} + e^{-} = Fe^{2+}$ | 0.711 | | $\frac{1}{2}O_2(g) + H^+ + e^- = \frac{1}{2}H_2O_2$ | 0.682 | | $48O_1^{2-} + 4H^+ + e^- = 4H_2S + 4H_2O$ | 0.303 | | $4N_2(g) + 4H^+ + e^- = 4NH^+$ | 0.274 | | $\text{CO}_2(g) + \text{H}^+ + e^- = \text{CH}_4(g) + \text{H}_2O$ | 0.169 | | $H^+ + e^- = \frac{1}{2}H_2(g)$ | 0.000 | The E_h^0 can be converted to the equilibrium constant for the half-reaction, K, using the equation $E_h^0 = (0.059/n) \log K$. M. McBride, 1994 TABLE 7.3 Oxidized and Reduced Forms of Several Important Elements | Element | Normal form in well-oxidized soils | Reduced form found in waterlogged soils | |-----------|---|--| | Carbon | CO ₂ , C ₆ H ₁₂ O ₆ | CH ₄ , C ₂ H ₄ , CH ₃ CH ₂ OH | | Nitrogen | NO_3^- | N_2 , NH_4^+ | | Sulfur | SO ₄ ² - | H_2S , S^{2-} | | Iron | Fe ³⁺ [Fe(III) oxides] | Fe ²⁺ [Fe(II) oxides] | | Manganese | Mn^{4+} [Mn(IV) oxides] | Mn2+ [Mn(II) oxides] | | Oxidized form | Reduced form | Eh at which change
of form occurs, V | |--------------------------------|------------------|---| | O ₂ | H ₂ O | 0.38 to 0.32 | | NO_3 | N_2 | 0.28 to 0.22 | | Mn ⁴⁺ | Mn ²⁺ | 0.22 to 0.18 | | Fe ³⁺ | Fe ²⁺ | 0.11 to 0.08 | | SO ₄ ² - | S ²⁻ | -0.14 to -0.17 | | CO_2 | CH ₄ | -0.20 to -0.28 | From Patrick and Jugsujinda (1992). - · Soil values: - E_h = 0.4 to 0.60 volts (well drained soil) - E_h = 0.3 to 0.35 volts (flooded, O₂ reduced) - $E_h = 0.25$ to -0.3 volts (prolonged flooding) ### Redox - Redox sequence in waterlogged soils - O₂ depleted due to displacement by H₂O, low H₂O solubility and consumption by biological activity - Soil becomes anaerobic and microbes must use other substances as TEA - pH rises because most redox reactions consume protons - NO₃ ---> N₂ (denitrification) # Ecological Importance of Soil <u>Aeration</u> - OM degradation - Fastest under oxidized conditions - Toxic by-products may accumulate (reduced) - · Ethylene gas, alcohols, and organic acids - Redox of elements - Nutrients (Fe³⁺ vs. Fe²⁺, SO₄²⁻ vs. S²⁻) - Toxic elements - Soil colors - CH₄ production - Plant growth