Supplementary Information

Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants

Thea Whitman^a, Akio Enders^b, and Johannes Lehmann^{c,d}*

^a TLW59@cornell.edu; Department of Crop and Soil Science, Cornell University, Ithaca NY, 14853, USA

^b ae55@cornell.edu; Department of Crop and Soil Science, Cornell University, Ithaca NY,

14853, USA

^cCL273@cornell.edu; Department of Crop and Soil Science, Cornell University, Ithaca NY,

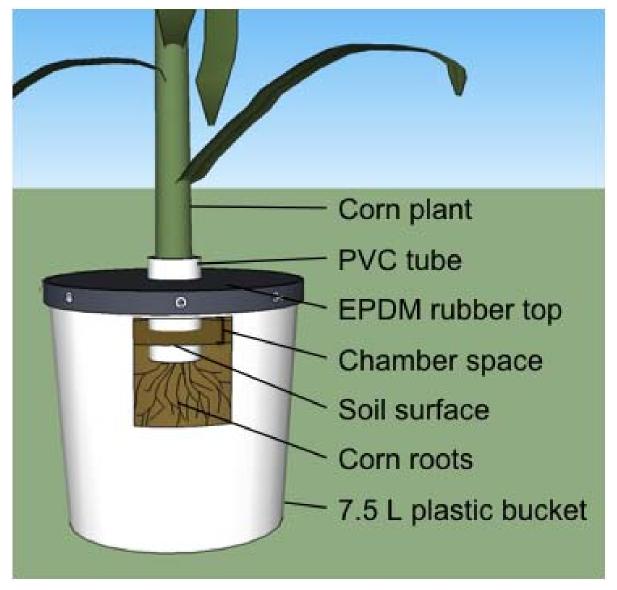
14853, USA; Tel. (607) 254-1236; Fax (607) 255-2644

^d CL273@cornell.edu; Atkinson Center for a Sustainable Future, Cornell University, Ithaca NY, 14853, USA

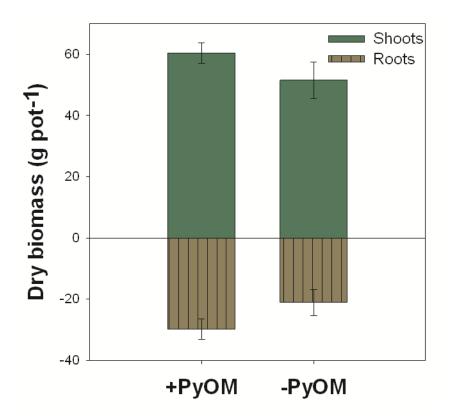
* Corresponding author

1. Details on isotopic partitioning

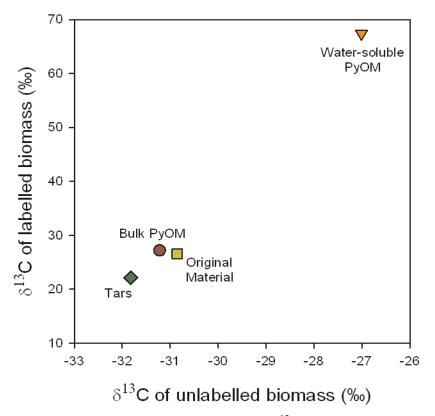
A key tool for priming research is the use of stable C isotopes, ¹²C and ¹³C, to differentiate the original sources of a common product in a two-part system. Briefly, the use of ¹³C isotopic tracers for SOC studies derives from the contrasting metabolic pathways of C₃ and C₄ plants. During photosynthetic uptake of CO₂, C₃ plants discriminate more against the rare ¹³C stable C isotope than C₄ plants (Farquhar *et al.*, 1989; O'Leary, 1988). Terrestrial plants with the C₃ pathway have δ^{13} C values (" δ^{13} C" ties the measured ¹³C/¹²C to a standard ¹³C/¹²C ratio) in the range of -32‰ to -22‰. Plants with C₄ pathway have higher δ^{13} C values, ranging from -17‰ to -9‰ (Boutton, 1991). Furthermore, over time, the isotopic composition of SOC grows to closely resemble the isotopic composition of the vegetation from which it has been derived (Ågren *et al.*, 1996). Thus, given a pool of C, such as soil CO₂ emissions, and knowing the δ^{13} C values of its two C sources, one can mathematically derive what fraction each source contributed to the whole (Werth and Kuzyakov, 2010). In an experiment where a C₄ plant is grown on a soil developed under C₃ vegetation, we could derive the fraction of total soil CO₂ emissions that are from this plant as compared to those from the C₃ soil using the equation:


$$f_{C_4 veg} = \frac{\delta_T - \delta_{C_3 soil}}{\delta_{C_4 veg} - \delta_{C_3 soil}},$$

where f_{C4veg} is the fraction of CO₂ contributed by the C₄ plant, δ is the δ^{13} C signature of the total CO₂ (δ_{T}), the C₃ soil (δ_{C3soil}), and the C₄ vegetation (δ_{C4veg}) (Werth and Kuzyakov, 2010).


2. Notes on the challenges of applying isotopic partitioning

Although isotopic partitioning is an elegant concept, it can be challenging to apply, because a consistent approach does not exist for choosing what biomass (shoots, roots, or sugars in roots) or soil C (dissolved organic C [DOC], SOC, or microbial biomass) component is the best proxy for the δ^{13} C of the CO₂ emitted from the plant or the soil. If they all shared the same δ^{13} C, this would not be a problem, but important isotopic fractionation can happen at coarse (roots *vs*. shoots) to fine (carbohydrates *vs*. lignin) levels. For example, the δ^{13} C of roots and the CO₂ they emit can differ by over 5‰ (Werth and Kuzyakov, 2010). We expect that PyOM also suffers from these issues. Czimczik *et al.* (2002) found that PyOM produced at lower charring temperatures was enriched in ¹³C relative to the initial biomass, while higher temperatures


resulted in a ¹³C depletion. The volatiles released at each charring step ranged widely (by as much as 10‰ in softwood), likely due to the varied temperature ranges over which different compounds (characterized by different δ^{13} C values) undergo thermal decomposition. Furthermore, Zimmerman *et al.* (2011) showed that the δ^{13} C of CO₂ evolved from a PyOM incubation varied substantially over the course of a >500-day incubation. Thus, it is clearly important to identify whether the δ^{13} C of sub-components of PyOM serve as a better proxy for the δ^{13} C of the CO₂ derived from it than its bulk initial δ^{13} C value.

Supplementary Fig. S1. Pot and chamber design inspired by Yang and Cai (2006). Chamber is shown in closed (sampling) position. Sampling occurs through a rubber septum (not shown) and chamber includes a tube vent to prevent pressure changes (not shown).

Supplementary Fig. S2. Biomass production with and without PyOM additions. Error bars represent ± 1 SE ($n_{+PyOM}=5$, $n_{-PyOM}=6$).

Supplementary Fig. S3. Comparison of ∂^{13} C values for labelled and unlabelled sugar maple PyOM and sub-components, including original materials. Water-soluble PyOM is consistently enriched in ¹³C, while tars are consistently depleted.

Supplementary Table S1

Element	Initial soil	Wood feedstock	РуОМ	
В	19.3	6.6	6.3	
Ca	104.8	3280.3	2344.6	
Cu	6.9	3.2	0.8	
Fe	257.8	20.6	9.1	
Κ	40.4	2482.3	2434.1	
Mg	27.8	500.1	230.9	
Mn	88.1	502.3	265.1	
Р	1.0	479.7	360.1	
S	21.3	59.6	33.1	
Zn	52.1	23.3	8.5	

Total elemental analysis of Mehlich III extraction (mg kg^{-1}).

Supplementary Table S2

Modified Hoagland's solution.

Stock	Chemical	Concentration	Final additions per pot		
				- plants	+ plants
Macronutrients	KNO ₃	0.7755	М	54.5	91.8
	MgSO ₄	0.3	М	21.1	35.5
	NH ₄ H ₂ PO ₄	0.255	М	17.9	30.2
	NH ₄ NO ₃	0.33	М	23.2	39.1
Ca	Ca(NO ₃)2	3.75	М	52.3	88.0
Micronutrients	H ₃ BO ₃	1.875	mM	0.132	0.222
	MnSO ₄	0.15	mM	0.011	0.018
	ZnSO ₄	0.0375	mM	0.003	0.004
	CuSO ₄	0.0375	mM	0.003	0.004
	Na ₂ MoO ₄	0.0375	mM	0.003	0.004
	NiSO ₄	0.06	mM	0.004	0.007
Fe	FeEDTA	93.75	mM	1.306	2.200

9

Supplementary Table S3

Sub-component	Unlabelled PyOM	Labelled PyOM
Bulk	-31.22 ± 0.01 (n=3)	+27.21 ± 0.19 (n=7)
Dissolved PyOM	-27.01 (n=1)	$+67.37 \pm 1.67(n=5)$
Tars or volatiles	-31.82 ± 0.04 (n=4)	$+22.15 \pm 0.19 (n=5)$
Original wood	-30.85 ± 0.03 (n=3)	$+26.53 \pm 1.04 (n=3)$
Respired PyOM	n.d.	$+27.04 \pm 0.64$ (Keeling plot intercept, n=6)

Measured ¹³C proxies (∂^{13} C relative to PDB standard ±SE (‰)) for PyOM.

References

- Ågren, G.I., Bosatta, E., Balesdent, J., 1996. Isotope discrimination during decomposition of organic matter: A theoretical analysis. Soil Science Society of America Journal 60, 1121-1126.
- Boutton, T.W., 1991. Stable carbon isotope ratios of natural materials I. Sample preparation and mass spectrometric analysis, in: Coleman, D.C., Fry, B. (Eds.), Isotopic Techniques in Plant, Soil, and Aquatic Biology: Carbon Isotope Techniques. Academic Press, Inc., San Diego, California, USA; London, England, UK, pp., 155-172.
- Czimczik, C.I., Preston, C.M., Schmidt, M.W., Werner, R.A., Schulze, E.-D., 2002. Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood. Organic Geochemistry 33, 1207–1223.
- Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology 40, 503–537.
- O'Leary, M.H. 1988. Carbon isotopes in photosynthesis. Bioscience 38, 328-336.
- Werth, M., Kuzyakov, Y., 2010. ¹³C fractionation at the root-microorganisms-soil interface: A review and outlook for partitioning studies. Soil Biology and Biochemistry 42, 1372–1384.
- Yang, L.-F., Cai, Z.-C., 2006. Soil respiration during a soybean-growing season. Pedosphere 16, 192–200.
- Zimmerman, A.R., Bin Gao, Ahn, M.-Y., 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry 43, 1169–1179.