1	Supplemental Material for
2	Sorption of lincomycin by manure-derived biochars from water
3	Cheng-Hua Liu ^{1, 2} , Ya-Hui Chuang ¹ , Hui Li ¹ , Brian J. Teppen ¹ , Stephen A. Boyd ¹ , Javier M.
4	Gonzalez ³ , Cliff T. Johnston ⁴ , Johannes Lehmann ⁵ , Wei Zhang ^{1, 2, *}
5	¹ Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
6	48824, United States
7	² Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48824,
8	United States
9	³ National Soil Erosion Research Lab, Agricultural Research Service, United States Department
10	of Agriculture, West Lafayette, IN 47907, United States
11	⁴ Department of Agronomy, Purdue University, West Lafayette, IN 47907, United States
12	⁵ Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853, United States
13	* Corresponding Author. Address: 1066 Bogue ST RM A516, East Lansing, MI 48824, United
14	States; Tel: (517) 353-0471; Fax: (517) 355-0270; Email: weizhang@msu.edu
15	
16	
17	
18	Number of pages: 8
19	Number of figures: 3
20	Number of tables: 2
21	

22 Supplemental Methods

23 Zeta Potential Measurement

24 Zeta potential of biochar particles was measured with the Malvern Zetasizer Nano-ZS 25 equipped with a MPT-2 autotitrator (Malvern Instruments, Worcestershire, UK). To generate 26 biochar colloid suspension for isoelectric point (pH_{IEP}) measurement, 10 mg biochar (particle size 27 $< 75 \,\mu$ m) was mixed with 50 mL DI water in a polyethylene centrifuge tube and then sonicated for 28 30 min. After sonication, top 10 mL of biochar suspension was withdrawn and then titrated with 29 0.1 M HCl or NaOH titrant from pH 10 to 2 using the autotitrator, and the corresponding zeta 30 potential at each pH was measured by the Zetasizer Nano-ZS. The pHIEP value was determined at 31 the pH where the zeta potential is zero. Additionally, zeta potential for biochar suspensions of 1-32 day or 180-day water exposure was also determined by the zetasizer.

33 LC-MS/MS Analytical Procedure

34 Lincomycin concentrations in the solution were determined by a Shimadzu Prominence high-35 performance liquid chromatograph coupled to an Applied Biosystems Sciex 3200 triple quadrupole mass spectrometer (LC-MS/MS). A Gemini 5u C18 110A 50×2.00 mm 5 µm column 36 37 was used. The mobile phase consisted of water (A) and 1:1 (v/v) acetonitrile-methanol mixture (B) 38 with A and B both containing 0.3% formic acid. Gradient conditions were 0 % to 40 % B in 0 to 1 39 minute, 40 % to 70% B in 1 to 2 minutes, 70 % - 80 % B in 2 to 3 minutes, 80 % to 100 % B in 3 40 to 3.5 minutes, and held for 0.5 minutes at a flow rate of 0.35 mL/min. Injection volume was 10 41 μ L. The tandem quadrupole MS was used with an electrospray ionization (ESI) and positive ion 42 mode. Lincomycin was detected and quantified using a multiple reaction monitoring mode with a 43 precursor/product transition of 407.2/126.2. The retention time and instrument detection limit of 44 lincomycin was 2.37 min and 0.2 pg.

Properties	Lincomycin
Molecular structure [‡]	
Molecular Formula [§]	$C_{18}H_{34}N_{2}O_{6}S$
Molecular weight [§]	406.54
pKa [§]	7.6
$\logK_{\rm ow}{}^{\$}$	0.20
Water solubility [§]	927 mg L^{-1} at 25 °C
pKa: dissociation cons	stant, K_{ow} : octanol/water partition coefficient; [‡] Data from Chem
(http://www.chemspide	r.com/); [§] Data from TOXNET (<u>http://www.toxnet.nlm.nih.gov/</u>)

46 Table S1. Chemical and physical properties of lincomycin^{\dagger}

	Pseudo-first-order				
Biochar	qe	k_1 \mathbf{p}^2		DMCE	
	$(\mu g \cdot g^{-1})$	(day ⁻¹)	ĸ	RNISE	
BM600	937	3.11×10^{-2}	0.837	175	
DM600	855	3.37×10^{-2}	0.951	187	
AM600	851	3.13×10^{-2}	0.867	203	
PM600	860	3.07×10^{-2}	0.837	197	
		Pseudo-second	-order		
	q _e	\mathbf{k}_2	D ²	RMSE	
	(µg g ⁻¹)	$(\mu g g^{-1} da y^{-1})$	K-		
BM600	856	$9.91\times10^{\text{-5}}$	0.916	144	
DM600	990	1.46×10^{-4}	0.987	124	
AM600	907	$1.40 imes 10^{-4}$	0.959	142	
PM600	852	$1.13 imes 10^{-4}$	0.927	169	
		Intraparticle dif	fusion		
	С	ki	D ²	DMCE	
	$(\mu g \cdot g^{-1})$	$(\mu g g^{-0.5} day^{-0.5})$	K-	KMSE	
BM600	160	52.3	0.973	34.0	
DM600	212	66.2	0.965	49.7	
AM600	228	54.6	0.963	42.1	
PM600	216	47.0	0.972	31.2	

50 Table S2. Fitted parameters of pseudo-first-order, pseudo-second-order, and intraparticle

	Langmuir				Freundlich			
Biochar	q _{max}	KL	\mathbb{R}^2	RMSE	n^{-1}	$\mathbf{K}_{\mathbf{F}}$	\mathbb{R}^2	RMSE
	$(\mu g g^{-1})$	$(L \mu g^{-1})$				$(\mu g^{(n-1)} g^{-1} L^n)$		
BM600 pH 6.6	555	$1.29\times10^{\text{-}2}$	0.99	15	0.47	28.5	0.98	34
BM600 pH 9.9	299	$7.87 imes 10^{-3}$	1.00	5.2	0.44	15.4	0.96	18
DM600 pH 6.5	605	$1.40 imes 10^{-2}$	0.99	19	0.48	30.7	0.97	38
DM600 pH 10.0	372	$5.68 imes 10^{-3}$	0.97	17	0.48	13.4	0.97	13
AM600 pH 6.9	697	$6.18 imes 10^{-3}$	1.00	9.3	0.61	13.7	0.99	29
AM600 pH 10.0	436	$4.58\times10^{\text{-}3}$	0.97	18	0.55	10.1	0.95	19
PM600 pH 7.3	576	$2.68 imes 10^{-3}$	0.96	15	0.71	4.29	0.96	29
PM600 pH 10.4	424	$3.41 imes 10^{-3}$	0.98	12	0.59	6.83	0.98	11

53 Table S3. Fitted parameters of Langmuir and Freundlich equations for lincomycin sorption on

54

manure-derived biochars.

55

59 Control was the biochar-free lincomycin solution.

60

- 63 BM600 (180 days), (d) DM600 (180 days), (e) AM600 (180 days), and (f) PM600 (180 days).
- 64 Control was the biochar-free lincomycin solution. No degradation candidates of lincomycin was
- 65 detected in long-term kinetics samples (b, d, f).

67 Fig S3. Zeta potential of manure-derived biochars as a function of solution pH.