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Abstract

Amazonian Dark Earths (ADE) are a unique type of soils developed through intense anthropogenic activities that trans-
formed the original soils into Anthrosols throughout the Brazilian Amazon Basin. We conducted a comparative molecular-
level investigation of soil organic C (SOC) speciation in ADE (ages between 600 and 8700 years B.P.) and adjacent soils using
ultraviolet photo-oxidation coupled with 13C cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS
NMR), synchrotron-based Fourier transform infrared-attenuated total reflectance (Sr-FTIR-ATR) and C (1s) near edge
X-ray absorption fine structure (NEXAFS) spectroscopy to obtain deeper insights into the structural chemistry and sources
of refractory organic C compounds in ADE. Our results show that the functional group chemistry of SOC in ADE was
considerably different from adjacent soils. The SOC in ADE was enriched with: (i) aromatic-C structures mostly from
H- and C-substituted aryl-C, (ii) O-rich organic C forms from carboxylic-C, aldehyde-C, ketonic-C and quinine-C, and
(iii) diverse group of refractory aliphatic-C moieties. The SOC in adjacent soils was predominantly composed of O-alkyl-C
and methoxyl-C/N-alkyl-C structures and elements of labile aliphatic-C functionalities. Our study suggests that the inherent
molecular structures of organic C due to selective accumulation of highly refractory aryl-C structures seems to be the key
factor for the biochemical recalcitrance and stability of SOC in ADE. Anthropogenic enrichment with charred carbonaceous
residues from biomass-derived black C (BC) is presumed to be the precursor of these recalcitrant polyaromatic structures. Our
results also highlight the complementary role that might be played by organic C compounds composed of O-containing
organic C moieties and aliphatic-C structures that persisted for millennia in these anthropic soils as additional or secondary
sources of chemical recalcitrance of SOC in ADE. These organic C compounds could be the products of: (i) primary recalci-
trant biomolecules from non-BC sources or (ii) secondary processes involving microbial mediated oxidative or extracellular
neoformation reactions of SOC from BC and non-BC sources; and stabilized through physical inaccessibility to decomposers
due to sorption onto the surface or into porous structures of BC particles, selective preservation or through intermolecular
interactions involving clay and BC particles.
� 2007 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Amazonian Dark Earths (ADE) are a unique type of
soils apparently developed between 500 and 9000 years
B.P. through intense anthropogenic activities such as bio-
mass-burning and high-intensity nutrient depositions on
pre-Columbian Amerindian settlements that transformed
the original soils into Fimic Anthrosols throughout the
Brazilian Amazon Basin (Sombroek, 1966; Smith, 1980;
Neves et al., 2003). These anthropic soils have similar tex-
ture, mineralogy, and other geochemical signatures with
adjacent soils (Zech et al., 1990; Costa and Kern, 1999).
However, they can be distinguished by their higher contents
of ceramic and lithic artifacts and by their characteristic
black color in sharp contrast with the yellowish to reddish
adjacent soils. They are also anomalously enriched with P,
Mg, Zn, and Mn, have higher water holding capacity, pH,
cation exchange capacity (CEC), and thus sustain higher
fertility compared to the intensely weathered acidic adja-
cent soils (Sombroek, 1966; Lehmann et al., 2001).

One of the most remarkable features of ADE, however,
is their ability to accumulate large amounts of soil organic
C (SOC) and its apparent stability for millennia despite the
warm and humid tropical environment, which favors rapid
organic matter decomposition and C loss from the soil
through net flux to the atmosphere (Glaser et al., 2000,
2001). These unique attributes, coupled with their occur-
rence in one of the most sensitive ecosystems to global
warming, make ADE an important C sink model created
through anthropogenic intervention and provide an excel-
lent opportunity to examine several hypotheses related to
SOC dynamics and C sequestration in soils. However, most
investigations conducted on ADE concentrated mainly on
the origin and history (Sombroek, 1966; Smith, 1999;
Woods and McCann, 1999), mineralogy (Costa and Kern,
1999), and soil fertility (Sombroek, 1966; Glaser et al.,
2001; Lehmann et al., 2003), while little information is
available concerning the structural chemistry of organic C
in these anthropic soils (Zech et al., 1990; Glaser et al.,
2003). Moreover, the mechanisms of SOC stabilization in
ADE are unique and although both chemical recalcitrance
(Zech et al., 1990) and physico-chemical protection mecha-
nisms (Glaser et al., 2000) were broadly implicated, the ac-
tual processes are not yet well understood. The few
available studies (Haumaier and Zech, 1995; Glaser et al.,
1998, 2003; Schmidt et al., 1999; Skjemstad et al., 2002;
Rumpel et al., 2006), however, seem to suggest that chem-
ical resistance to biochemical degradation due to accumula-
tion of aromatic compounds from biomass-derived black C
(BC) could be the main factor controlling the stability of
SOC in ADE.

Biomass-derived BC represents a suite of refractory car-
bonaceous residues produced by incomplete combustion of
organic matter occurring along a ‘‘combustion continuum’’
ranging from partially charred biomass to charcoal to
highly graphitized soot particles (Goldberg, 1985; Masiello
and Druffel, 1998; Schmidt and Noack, 2000). A recent
study by Glaser et al. (2001) estimated that up to 35% of
the total SOC pool in ADE could be constituted by BC,
with radiocarbon ages of up to 2000 years. However, since
BC represents only part of the total SOC pool and that the
structural composition of the bulk SOC accrues from both
BC and non-BC constituents, the sources of biochemically
recalcitrant organic C compounds and the processes in-
volved in stabilization of the bulk SOC in ADE are still a
subject of debate. Madari et al. (2004) stressed this lack
of knowledge and pointed out the need for detailed investi-
gations involving the physico-chemical and molecular prop-
erties of organic C in these model soils. Such investigations
could help to identify and fingerprint the complex SOC
functionalities and provide molecular-level evidence to
determine whether basic compositional differences exist in
the structural chemistry of SOC in ADE and adjacent soils.
It may also offer concrete evidence as to whether the con-
ferred biochemical recalcitrance of SOC in ADE is entirely
attributed to: (i) enrichment of complex polyaromatic com-
pounds from BC or complemented by (ii) selective preserva-
tion of primary recalcitrant biomolecules from plant litter
and rhizodeposits, and (iii) secondary processes involving
interactions of recalcitrant organic C moieties produced
by microbial mediated enzymatic or extracellular neofor-
mation reactions from BC and non-BC sources during soil
organic matter (SOM) decomposition (Haumaier and Zech,
1995; Poirier et al., 2000; Lützow et al., 2006). Further
impetus for such study arises from the fact that detailed
structural chemistry information generated from BC-rich
soils could have global level environmental importance,
since its formation is often credited as a CO2 sink by trans-
ferring fast-cycling C from the atmosphere–biosphere sys-
tem into much slower cycling C forms in the geosphere
(Kuhlbusch, 1998). Biomass-derived BC could also play a
key role in the biogeochemical cycling of elements and
due to its amphipathic nature may serve as a carrier of pol-
lutants in soils.

In the present study, we seek to conduct molecular-level
investigation of organic C speciation on 600- to 8700-year-
old ADE and adjacent soils from the Brazilian Amazon Ba-
sin making use of high-energy ultraviolet photo-oxidation
coupled with solid-state 13C cross polarization-magic angle
spinning nuclear magnetic resonance (CP-MAS NMR),
synchrotron-based Fourier transform infrared-attenuated
total reflectance spectroscopy (Sr-FTIR-ATR) and C (1s)
near edge X-ray absorption fine structure (NEXAFS) spec-
troscopy techniques. Since chemical recalcitrance occurs at
the molecular-level, information generated from these com-
plimentary spectroscopic techniques is expected to provide
deeper insight into the structural chemistry, as well as the
nature and sources of refractory SOC compounds in
ADE. This approach may help to narrow the current
knowledge gap concerning the mechanisms of SOM stabil-
ization and C sequestration in these unique anthropic soils.

2. MATERIALS AND METHODS

2.1. Site description and soil analysis

Amazonian Dark Earths and adjacent soil samples were
collected in August, 2004 from four archaeological sites
(Hatahara, Lago Grande, Acutuba and Dona Stella) from
the central Amazon near Manaus, Brazil (3�80S, 59�520W;



Fig. 1. Distribution of known ADE sites in the Brazilian Amazon Basin and location of the present study sites.
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Fig. 1) that have been dated to span from about 600–8700
years B.P. (Table 1, Neves et al., 2003). The altitude of the
sites ranges from 40 to 50 m above sea level, with a mean
annual temperature of about 26.6 �C, and a mean annual
precipitation of about 2400 mm. The climax vegetation of
the area is represented by high closed canopy forest with
large biomass and high species diversity. The most aboun-
dant species at the investigated sites are Chrysophyllum

amazonicum, Crepidospermum rhoifolium, Anacardium par-

vifolium, Ambelania acida, Dinizia excelsa, Bocageopsis mul-

tiflora, and Bertholletia excelsa. The soils of the area are
derived from Tertiary sediments. They are well-drained san-
dy to clayey textured soils developed either on Oxisols or
Ultisols (Soil Survey Staff, 1999). Apart from the Lago
Grande site, where ADE samples were found near the sur-
Table 1
Selected site characteristics and soil chemical properties of ADE and ad

Site Age (years) pH SOCa (g

H2O KCl

Adjacent soils

Hatahara n.m.b 4.6 3.8 21.8
Lago Grande n.m. 4.2 3.5 17.5
Acutuba n.m. 4.7 3.9 15.4
Dona Stella n.m. 3.9 2.6 10.2

Amazonian Dark Earths

Hatahara 600–1000 6.4 5.5 22.0
Lago Grande 900–1100 5.9 4.9 31.5
Acutuba 2000–2300 5.6 4.2 15.7
Dona Stella 6700–8700 5.0 4.1 16.5

a SOC, soil organic carbon.
b n.m., not measured.
face layer (0–16 cm), all ADE samples were collected from
undisturbed buried (Hatahara 43–69 cm, Acutuba 48–
83 cm, Dona Stella 190–210 cm) horizons. All samples were
air-dried, visible root remnants were removed, and sieved to
<2 mm before chemical analysis.

Total organic C and N concentrations were analyzed by
dry combustion using Europa ANCA GSL sample combus-
tion unit (PDZ Europa, Crewe, UK). The pH-H2O and pH-
KCl were determined in 1:2.5 soil:solution (w/v) suspen-
sion. Total P was measured by inductively coupled
plasma-atomic emission spectrometry (ICP-AES, Thermo
Electron Corp., MA, USA) after microwave digestion with
concentrated HCl, HNO3, and HF acids according to EPA
3052 protocol. Selected site characteristics and soil chemical
properties are shown in Table 1.
jacent soils from central Amazon

kg�1) Total N (g kg�1) C/N Total P (g kg�1)

1.6 13.6 273
1.3 13.5 251
0.8 19.3 198
0.4 25.5 51

1.0 22.0 9064
1.8 17.5 5026
1.0 15.7 777
1.1 15.0 139
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2.2. Photo-oxidation and 13C nuclear magnetic resonance

spectroscopy

The presence of magnetic and paramagnetic materials
can cause severe interference with the NMR technique.
Therefore, samples from all four sites were treated with
2% HF solution (w/v) prior to 13C NMR analysis. Addi-
tionally, an ADE sample from the Lago Grande site was
treated separately with high-energy ultraviolet photo-oxida-
tion for 4 h as described by Skjemstad et al. (1996). Solid-
state 13C CP-MAS NMR spectra were recorded from all
samples at a frequency of 50.3 MHz on a Varian Unity
200 spectrometer (Varian Inc., CA, USA) fitted with a
4.7 T wide-bore Oxford superconducting magnet. Deminer-
alized soil samples were packed into 7 mm diameter zirco-
nia rotors with Kel-F caps and spun at 5 kHz in a Doty
Scientific MAS probe (Doty Scientific Inc., SC, USA). All
spectra were obtained with 1 ms contact time and 500 ms
recycle delay time to ensure complete relaxation between
scans (recycle delay > 7 T1H). The spectra were plotted be-
tween �100 and 225 ppm using a Lorentzian line broaden-
ing of 50 kHz, and a 0.007 s Gaussian broadening.
Chemical shift assignments were externally referenced to
the methyl resonance of hexamethylbenzene (Sigma–Al-
drich Corp., MO, USA) at 17.36 ppm. The relative propor-
tion of organic C functional groups was determined by
integration of the signal intensity of each spectrum over gi-
ven chemical shift regions as described by Skjemstad et al.
(1996). For the relative intensity distribution of the solid-
state 13C CP-MAS NMR, the precision was approximately
10% of the signal intensity, depending on the signal-to-
noise ratio (Schmid et al., 2002).

2.3. Extraction of humic fractions

Humic fractions from ADE and adjacent soil samples
were extracted with a mixture of 0.1 M NaOH and 0.4 M
NaF solutions (pH = 12.4) in a 1:5 soil to extraction solu-
tion ratio (w/v) under N2 environment. The extracts were
filtered twice through 0.2 lm pore-size membrane filter
(Pall Gelman Laboratory, MI, USA) to remove fine clay
that may interfere with Sr-FTIR-ATR and NEXAFS mea-
surements (Solomon et al., 2005). The extracts were trans-
ferred into dialysis tubes (MWCO 12,000–14,000 Da,
Spectrum Laboratories, CA, USA), dialyzed against deion-
ized water, and lyophilized.

2.4. Synchrotron-based fourier transform infrared

spectroscopy

Synchrotron-based-FTIR-ATR spectra were recorded
on the U10B beamline at the National Synchrotron Light
Source (NSLS), Brookhaven National Laboratory. The
beamline is equipped with a spectra tech continuum IR
microscope with 32· transmission/reflection and FTIR
step-scan spectrophotometer (Nicolet Magna 860, Thermo
Nicolet Corp., WI, USA) fitted with a KBr beam splitter
and a mercury-cadmium-telluride (MCT) detector with
500–7000 cm�1 frequency range and 1.0 cm�1 spectral reso-
lution. Thin films of humic fractions were prepared from
aqueous suspensions obtained by dispersing them in milli-
pore water. We transferred 10 ll droplets of this suspension
onto IR glass slides (Kevley Techniologies, OH, USA) and
dried them at 35 �C. Sr-FTIR-ATR spectra from the sam-
ples were recorded with a 10 · 10 lm2 aperture size from
4000 to 650 cm�1 frequency range with a 4 cm�1 resolution.
Each spectrum was composed of 256 scans co-added before
Fourier transform. After background subtraction for the
IR glass, we used OMNIC version 6.3 (Thermo Nicolete
Corp., WI, USA) to correct the baseline, normalize and
identify peak positions and calculate signal intensities of
the reduced spectra (4000–800 cm�1).

2.5. Near edge X-ray absorption fine structure spectroscopy

NEXAFS spectra were recorded at X-1A1 beamline of
the NSLS using the scanning transmission X-ray micros-
copy (STXM) endstation. The essential components of
the STMX are a tunable undulator inserted in the
2.8 GeV electron storage ring generating a high flux of pho-
tons at 107 spatially coherent photons s�1 in the soft X-ray
region, a spherical grating monochromator with maximum
spectra resolving power of 5000 lines mm�1, a 160-lm Fres-
nel zone plate with spatial resolution of 45 nm, and a pro-
portional counter to detect the transmitted photons. The
beamline slit width was set to 45 · 25 · 25 lm (Spector
et al., 1998; Plaschke et al., 2004). The monochromator
was calibrated using CO2 adsorption band (290.74 eV).
Thin films of humic fractions were prepared by transferring
3 ll droplets of aqueous suspensions onto 100 nm thick
Si3N4 windows (Silson Ltd, Northampton, UK). After a
high resolution STXM micrograph was taken to locate an
area of uniform sample thickness, the illuminated spot
was increased to 10 lm by defocusing the zoneplate. Spec-
tra of the samples (I) were recorded from three different
spots through the films and SiN3 windows by moving the
grating from 280 to 310 eV on a single spot with 0.1 eV en-
ergy step and 120 ms dwell time and averaged. Before each
scan, background spectra (Io) were collected in triplicate
from sample-free regions of the Si3N4 windows.

For comparison, all NEXAFS spectra were baseline cor-
rected and normalized prior to curve fitting using WinXAS
version 3.1 (WinXAS Software, Hamburg, Germany) to
avoid spectral dependence on C content (Stöhr, 1996).
Hence, spectral properties are indicative of changes in C
chemistry. Each normalized spectra was then further re-
solved into its individual arctangent and Gaussian curve
components (G) using the nonlinear least-squares fitting
routine SOLVER of Microsoft Excel. Two ionization
thresholds were set for C (1s) spectra deconvolution by set-
ting arctangent functions at 290.4 eV for aromatic/aliphatic
C (Hitchcock and Ishii, 1987; Hitchcock et al., 1992) and at
292.0 eV for hydroxylated aromatic C with full width at
half maximum (FWHM) of 0.4 eV to generate the contin-
uum spectrum up to 310 eV (Schäfer et al., 2005). In order
to extract semi-quantitative information from spectral
deconvolution, the FWHM of Gaussian peaks was loosely
constrained between 0 and 0.5 eV and six Gaussian func-
tions representing the main 1s–p* and Rydberg/mixed va-
lence transitions were resolved at 284.6 (G1), 285.2 (G2),



Molecular signature and recalcitrance of C in Amazonian Dark Earths 2289
286.6 (G3), 287.2 (G4), 288.6 (G5), and 289.6 (G6) eV. The
positions of the Gaussian peaks were externally referenced
using the 1s–p* and 1s–3p/r* transitions of organic C stan-
dards (benzoquinone and benzanthracene for 284.6 eV, gal-
lic acid and benzoic acid for 285.2 eV, vanillin for 286.6 eV,
histidine and phenylalanine for 287.2, citric acid for 288.7,
arabinose, rhamnose monohydrate and glucuronic acid for
289.6 eV) obtained from a chemical supplier (Sigma–Al-
drich Corp., MO, USA). Furthermore, two r* transitions
(292.3, r1 and 293.6, r2) were simulated by simplified
Gaussian shape function with FWHM of <1 and <2 eV,
respectively (Cody et al., 1995, 1996), with an average
goodness of fit S(Ifit � Imeasured)2 of about 0.080. Details
about the deconvolution procedure can be found in Schei-
nost et al. (2001), Schäfer et al. (2003, 2005), Scumacher
(2005) and Solomon et al. (2003, 2005).

3. RESULTS AND DISCUSSIONS

3.1. Molecular signature of SOC using 13C CP-MAS NMR

spectroscopy

Solid-state 13C CP-MAS NMR spectroscopy revealed
the presence of extremely heterogeneous organic C molecu-
lar structures in ADE and adjacent soils (Fig. 2). We ob-
served distinct peaks of alkyl-C (C–H) species between
dC = 0–50 ppm representing long-chained polymethylene
(CH2)n and short-chained or branched terminal methyl
(CH3), methylene (CH2), and tertiary (CH) or quaternary
Chemical shift
200250 150 100 50 0 -50 ppm

Acutuba

Dona Ste

Lago Gr

Hatahara

Adjacent soils

Fig. 2. Stacked 13C CP-MAS NMR spectra of ADE an
(C) aliphatic-C structures such as those found in lipids,
hemicellulose, and proteins (Skjemstad et al., 1996). Shoul-
ders evident between dC = 50–60 ppm were attributed to
methoxyl-C (–OCH3) indicative of syringyl and guaiacyl
(sinapyl) units of lignin, as well as to N-alkyl-C (CH–
NH) species from polypeptides (Kögel-Knabner, 2002).
Signals between dC = 60 to 95 ppm, with a peak maximum
at about dC = 73 ppm were ascribed to O-alkyl-C (CHOH,
CH2–OH, CH2–O–) structures representing carbohydrates
mainly due to C2 to C6 structures of cellulose, hemicellu-
lose, and other polysaccharides, as well as to alcohols and
ether bonded aliphatic-C structures. Peaks between
dC = 95–110 ppm represent di-O-alkyl-C structures (O–
CH–O) of anomeric-C (C1) in polysaccharides and ketals.
The broad signals between dC = 110 and 150 ppm were
attributed to H- and C-substituted aryl-C (CAH or C@C)
mainly resonating from C in substituted phenylpropane,
alkylbenzene, and other aromatic rings or to alkenic moie-
ties conjugated with furanoid or aromatic units derived
from charcoal, soot, etc (Benzing-Purdie et al., 1985).
Chemical shifts between dC = 150 and 165 ppm resulted
primarily from O-aryl-C (C–O–, C–OH) groups of lignin-
derived phenolic compounds such as guaiacyl, syringyl, q-
coumaryl, and q-hydroxyphenyl and to a lesser extent from
tannins, aromatic ethers, and N-substituted aromatic-C
(Kögel-Knabner, 2002). Carbonyl-C structures resonated
between dC = 165 and 225 ppm, where signals between
dC = 165 and 185 ppm were attributed to carboxylic acid
(COOH) and amide (–CONH2) groups, while peaks
Chemical shift
200250 150 100 50 0 -50 ppm
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between dC = 185 and 225 ppm were ascribed to contribu-
tions from aldehydes (HC@O), ketones, and quinones
(C@O) (Skjemstad et al., 1996; González-Pérez et al.,
2004; Knicker et al., 2005). The spectral features of ADE
largely resemble those recorded from volcanic ash soils
(Hatcher et al., 1989), charred plant materials (Haumaier
and Zech, 1995; Trompowsky et al., 2005), and from soils
frequently affected by fire (Skjemstad et al., 2002; Knicker
et al., 2005).

The results of 13C CP-MAS NMR spectroscopy (Table
2) indicate that the functional group chemistry of SOM in
ADE is distinctively different from adjacent soils. Amazo-
nian Dark Earths were largely dominated by aromatic-C
structures (30.8–46.8%) compared with adjacent soils
(17.6–28.1%). The differences were almost entirely due to
contributions from H- and C-substituted aryl-C structures.
This was confirmed by the higher degree of aromaticity of
SOC [aryl-C/(alkyl-C + methoxyl-C + O-alkyl-C + di-O-
alkyl-C + aryl-C + O-aryl-C + carbonyl-C)] observed in
ADE (0.25–0.38) compared to adjacent soils (0.10–0.20).
Skjemstad and Dalal (1987) showed that sp2-hybridized C
from condensed aromatic rings contributes to the signal
around dC = 130 ppm. The most probable sources of these
condensed ring structures in soils are biomass-derived
charred residues and coal-derived materials (Haumaier
and Zech, 1995; Skjemstad et al., 1996; Schmidt et al., 1999).

Our results also show that the SOM in ADE (18.5–
22.2%) is enriched with carbonyl-C structures compared
to adjacent soils (15.4–17.8%). Carboxyl-C rich clusters
were also found in humic fractions extracted from BC-rich
Palaeosols (Hatcher et al., 1989) and Anthrosols (Glaser
et al., 2003), as well as from charred plant materials (Hau-
maier and Zech, 1995; Trompowsky et al., 2005), and were
partly related to partial oxidation of the polyaromatic core
of BC. However, since ADE contains variety of organic
substrates from different sources, these O-containing com-
pounds could also be partly the results of SOM decomposi-
tion from non-BC sources. In fact, microorganisms are
known to oxidize plant-derived phenols and polyphenols
by splitting their benzene rings to form carboxylic acids
(Dagley, 1967). Several types of fungus, particularly ‘‘white
rot’’ fungus, were also shown to be able to decompose for-
est litter and produce oxalic acid, as well as other carboxylic
acids (Blaschke, 1979). The non-BC carbonyl-C containing
moieties could be stabilized in these anthropic soils
through: (i) physical inaccessibility to decomposers due to
sorption on the surface or into porous BC structures, (ii)
inherent resistance to biochemical oxidation, or (iii) inter-
molecular interactions involving clay and BC particles that
can considerably reduce availability and rate of degrada-
tion of these substrates due to complexation and changes
in conformation (Chenu and Stotzky, 2002; Guggenberger
and Kaiser, 2003; Lehmann et al., 2005). In contrast, smal-
ler proportions of alkyl-C (10.3–13.8%), O-alkyl-C (9.9–
17.3%), di-O-alkyl-C (5.3–17.0%), and methoxyl-C/N-al-
kyl-C (6.3–10.8%) moieties were obtained from ADE com-
pared to adjacent soils (alkyl-C, 16.3–19.0%; O-alkyl-C,
18.0–23.7%; di-O-alkyl-C, 9.4–11.7%; methoxyl-C/N-al-
kyl-C, 10.3–13.3%). The O-alkyl-C to aryl-C ratio, an index
often used to assess relative enrichment of labile polysac-



Fig. 3. Stacked 13C CP-MAS NMR spectra of ADE sample from
the Lago Grande site recorded before and after high-energy
ultraviolet photo-oxidation.
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charides over the more recalcitrant aryl-C structures in
SOM (Baldock et al., 1997), was much higher in adjacent
soils (0.90–2.29) than in ADE (0.27–0.69).

Numerous studies have indicated the presence of recalci-
trant aliphatic-C structures in soils (Baldock et al., 1997;
Poirier et al., 2000) and have suggested that alkyl-C to O-
alkyl-C ratio, herein referred to as aliphaticity, can be used
to investigate the relative accumulation of these organic C
moieties during the decomposition process. We found a
slightly higher degree of aliphaticity from ADE at Hataha-
ra and Acutuba sites (1.02–1.09) compared to the corre-
sponding adjacent soils (0.85–0.92), respectively,
suggesting relative enrichment of refractory aliphatic-C
moieties compared to the more labile O-alkyl-C structures
in ADE from the two sites. Additionally, the source of ali-
phatic-C in adjacent soils seems to be invariably dominated
by long-chained polymethylene structures centered near
30 ppm (Fig. 2). However, the ones from ADE seem to
be more diverse in nature and include not only long-
chained structures but also aliphatic-C species arising from
weak resonances near 15 ppm (terminal methyl-C), 20 ppm
(methylene-C), and 45 ppm (tertiary-C). Our results com-
pare favorably with the observation by Zech et al. (1990)
who attributed the heterogeneous nature of aliphatic-C
structures in ADE to the presence of substantial amounts
of short-chained, highly branched aliphatic-C moieties. De-
spite large differences in age, we did not observe systematic
differences in the nature and sources of recalcitrant organic
C forms of ADE from the four sites.
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Fig. 4. Relative proportions of organic C functional groups
resolved by 13C CP-MAS NMR spectroscopy (a), aromaticity
and aliphaticity indexes and O-alkly-C to aryl-C ratio (b) before
and after treatment of ADE sample from the Lago Grande site
with high-energy ultraviolet photo-oxidation.
3.2. Molecular signature of SOC following treatment with

high-energy ultraviolet photo-oxidation

The structural composition of recalcitrant organic C
moieties and their contribution to the bulk SOM in ADE
was further investigated by subjecting an ADE sample from
Lago Grande site to a high-energy ultraviolet photo-oxida-
tion procedure (Fig. 3). This technique is designed to re-
move photo-oxidizable-labile C forms, and examine
molecular structures of the remaining more stable SOM
using NMR spectroscopy (Skjemstad et al., 1996; Schmidt
et al., 1999; Baldock and Smernik, 2002). Our results show
that photo-oxidation greatly reduced the proportions of al-
kyl-C, methoxyl-C/N-alkyl-C, O-alkyl-C, and di-O-alkyl-C
structures by 25%, 55%, 54%, and 42%, respectively, an
indication that these BC-rich anthropic soils might have po-
tential to stabilize substantial amounts of labile SOC bio-
molecules for millennia (Fig. 4a). In contrast, the
proportions of aryl-C, O-aryl-C, and carbonyl-C structures
of photo-oxidation resistant SOM increased by 57%, 67%,
and 24%, respectively. The degree of aromaticity and ali-
phaticity of the remaining SOC increased from 0.25 to
0.39 and from 0.80 to 1.31, respectively, while the O-al-
kyl-C to aryl-C ratio decreased substantially from 0.69 to
0.20 following photo-oxidation (Fig. 4b). The dominance
of H- and C-substituted aromatic blocks following photo-
oxidation was further evidence that highly resistant aryl-C
structures with low degree of O-substitution seems to be
the primary sources of recalcitrance in ADE. Anthropo-
genic enrichment by charred carbonaceous residues from
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biomass-derived BC seems to be the main precursors of
these highly refractory polyaromatic structures. This con-
clusion concurs with the suggestions of Haumaier and Zech
(1995), Skjemstad et al. (1996), Schmidt and Noack (2000),
and Glaser et al. (2001). Our results also highlight the role
that may be played by organic C compounds containing
carbonyl-C, O-substituted aryl-C, as well as by resonances
normally attributed to aliphatic-C structures that survived
photo-oxidation as an additional or complementary source
of chemical and structural stability of SOC in ADE. These
organic C moieties could be the products of changes in-
duced by decomposition and humification processes on
SOC from BC and non-BC sources through condensation
reactions or in situ conversions of mobile to rigid alkyl-C
structures, as well as through reactions involving selective
stabilization of refractory organic C structures from plant
residues, rhizodeposits or microbial metabolites in these
anthropic soils (Kögel-Knabner et al., 1992).

3.3. Molecular signature of SOC in humic fractions using

Sr-FTIR-ATR spectroscopy

Synchrotron-based FTIR-ATR (Fig. 5) displayed a vari-
ety of diagnostic absorption band patterns between the fre-
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changes in signal intensities reflecting differences in molecu-
lar structures of organic C appeared near 1639, 2929, 2852,
1384, and 1053 cm�1 (Fig. 5). Amazonian Dark Earths
were largely dominated by C@C vibrations of aromatic-C
and C@O stretching of quinones and ketones, asymmetric,
and symmetric C–H stretching and C–H deformation of ali-
phatic-C, as well as C–O stretching and OH deformation of
carboxylic-C compared to the proportions of these organic
C structures in adjacent soils (Table 3). The degree of aro-
maticity (0.27–0.30) and aliphaticity (1.91–3.29) were also
much higher in ADE compared to the values of these in-
dexes in adjacent soils (0.14–0.19 and 1.01–2.62, respec-
tively). Although contributions from selective enrichment
of highly carbonized primary and secondary aromatic-C
components cannot be excluded, the dominance of refrac-
tory aromatic-C moieties in ADE could be primarily the
product of fire-induced endothermic neoformation reac-
tions involving dehydration and subsequent rearrangement
of organic C compounds such as carbohydrates, amino
acids and unsaturated alkyl chain structures (Knicker
et al., 1996; Freitas et al., 1999; Almendros et al., 2003).
Therefore, it is possible to suggest that fire-induced altera-
tions could lead to transformation of originally labile or-
ganic C compounds to biochemically recalcitrant C forms
that can contribute to long-term sequestration of C in soils.
The abundant contributions from O-containing-C and ali-
phatic-C structures to the Sr-FTIR-ATR spectral features
of the anthropic soils, however, were an indication that
anthropogenic deposition of charred residues alone cannot
be accountable for the observed structural heterogeneity
and stability of SOC in ADE. This suggestion is in accor-
dance with the fact that biochemical processes are normally
credited to formation of carboxyl-containing molecular
constituents and that thermal treatments have been shown
to preferentially remove external O-groups from charred
organic materials (Almendros et al., 1992). Similarly, high
temperature has a tendency to selectively decrease the
chain-length of lipids, and absorption bands representing
aliphatic-C functionalities are normally absent in FTIR
spectra of humic fractions extracted from charcoal (Gon-
zález-Pérez et al., 2004). In fact, the origin and formation
pathways of these aliphatic-C moieties in stable SOM frac-
tions remain largely unknown (Poirier et al., 2000). How-
ever, different sources varying from highly aliphatic
molecular components such as cutans and suberans from
higher plants (Augris et al., 1998) to microorganisms (van
Bergen et al., 1997) and cross-linkage of plant and micro-
bial components (Kögel-Knabner et al., 1992) have been
considered. The higher proportion of carboxylic-C and ali-
phatic-C functionalities observed in ADE using Sr-FTIR-
ATR spectroscopy seem, therefore, to provide further evi-
dences that recalcitrant organic C compounds containing
these functional groups could be partly the products of
mechanisms predominantly involving microbial or enzy-
matic oxidative processes of SOM from non-BC sources.

Analogous to NMR spectroscopy, the relative propor-
tions of signals intensities of O–H vibrations from phenols,
alcohols, and amides (22.3–38.8%) and C–O stretching
vibrations of polysaccharides (15.8–22.6%) recorded by
Sr-FTIR-ATR spectroscopy from adjacent soils were much
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higher than the proportions of these moieties from ADE
(18.2–22.4%, 11.0–15.3%, respectively). We also observed
higher polysaccharide-C to aromatic-C ratios in adjacent
soils (0.99–1.43) compared to the values of this index in
ADE (0.52–0.66, Table 3). The fact that potentially labile
organic C structures, most probably from direct deposition
of plant, animal and microbial residues, dominate the Sr-
FTIR-ATR spectral features of adjacent soils in contrast
to ADE was an indication that the sources of SOC, and
consequently structural composition of the resultant SOM
in ADE was considerably modified by prehistoric anthro-
pogenic interventions stemming from pre-Columbian
Amerindian settlements.

3.4. Molecular signature of SOC in humic fractions using

C (1s) NEXAFS spectroscopy

Recent investigations using synchrotron-based C (1s)
NEXAFS spectroscopy have shown that this technique is
a powerful, noninvasive method that can be used not only
to identify and fingerprint complex molecular structures
but also to investigate the impact of human intervention
on the composition and biogeochemical cycling of organic
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et al., 2003; Schäfer et al., 2003; Solomon et al., 2005,
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tions in the fine structure regions of C K-edge spectra re-
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range of 284 to 310 eV. Since fine structures in the C (1s)
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et al., 2003), only the main 1s–p* transitions were used
for interpretation of the NEXAFS results. The C (1s) spec-
tra (Fig. 6) exhibited good selectivity in specific energy re-
gions that correspond to characteristic functional groups.
This allowed us not only to fingerprint but also semi-quan-
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deeper insight into the structural chemistry of organic C
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1998; Ade and Urquhart, 2002; Lehmann et al., 2005). The
sum of C moieties near 284.6 and 285.2 is used to represent
total aromatic-C identified by NEXAFS in subsequent dis-
cussions throughout this paper. The absorption bands evi-
dent near 286.6 eV were primarily assigned to phenolic-C
(O–H) including O-substituted aryl-C (C–O–, C–OH) indic-
ative of lignin and possibly ketonic-C and phenyl-C at-
tached to amide (N–H) groups (Cody et al., 1998; Rothe
et al., 2000; Ade and Urquhart, 2002). The 1s–3p/r* tran-
sition near 287.2 eV were due to C–H aliphatic-C of CH3,
CH2, and CH nature, while the strong absorption bands
near 288.6 eV represents C 1s–p* transition of carboxylic-
C (COOH) groups (Cody et al., 1998; Braun et al., 2005).
The resonances near 289.6 eV were attributed to C 1s–p*

transitions of O-alkyl-C (C–OH) moieties representing
mainly polysaccharides and smaller proportions of alcohol
and ether-C (Scheinost et al., 2001; Solomon et al., 2005).

From the stacked NEXAFS spectra (Fig. 6) and relative
proportions of C forms obtained by spectral deconvolution
(Table 4), it is apparent that C 1s–p* transition of carbox-
ylic-C was the most prominent form of organic C func-
tional group representing from 36.3% to 38.8% and from
38.2% to 42.1% of the total SOC identified by NEXAFS
from ADE and adjacent soils, respectively. This provides
a strong indication that the SOC from BC and non-BC
sources has undergone a considerable biochemical oxida-
tion and a substantial amount of carboxylic acid containing
structures were accumulated in these anthropic soils. This
observation is in accordance with the results of our previ-
ous investigation using NEXAFS spectroscopy, where we
reported the presence of spatially distinct highly oxidized
regions on the surface of BC particles (Lehmann et al.,
2005), and which led us to conclude that these features
could be evidence of progressive surface oxidation of
charred particles or an indication of surface adsorption
and stabilization of oxidized organic C moieties from
non-BC sources. Examination of NEXAFS spectral fea-
tures further revealed that absorption intensities due to C
1s–p* transition of quinone plus aryl-C moieties were much
stronger in ADE (19.6–28.7%) than adjacent soils (12.2–
18.7%) reflecting the larger intrinsic aromatic-C content
of SOM in ADE; most probably through deposition of
BC by anthropogenic means. Spectral deconvolution
showed that up to 93% of these aromatic-C structures were
the result of contributions from C 1s–p* transition of pro-
tonated, alkylated to carbonyl-substituted aryl-C (C@C)
moieties, and that quinone-type C species contribute only
to a smaller proportion of the total aromatic-C signal (Ta-
ble 4). This has been confirmed by the higher degree of aro-
maticity of SOC identified by C (1s) NEXAFS spectroscopy
from ADE (0.20–0.29) compared to the values obtained
from the corresponding adjacent soils (0.12–0.19). Addi-
tionally, higher proportions of phenolic-C (O–H) structures
that are indicative of O-substituted aryl-C (C–O–, C–OH)
in lignin and ketonic-C moieties and phenyl-C attached to
amide (N–H) groups were obtained from ADE (14.0–
17.3) than adjacent soils (9.4–10.9). On the other hand,
the relative proportions of organic C species resolved from
the C (1s) spectra (Table 4) indicate that adjacent soils were
richer in O-alkyl-C structures (20.0–25.9%) such as those
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found in carbohydrates or in cellulose compared to samples
collected from ADE (8.1 to 21.3). This has been corrobo-
rated by the relatively higher O-alkyl-C to aromatic-C ratio
from adjacent soils (1.07–2.09) than the ones from ADE
(0.29–1.09). The deconvolution of the C (1s) spectra showed
similar proportions of C 1s–3p/r* transition of aliphatic-C
structures in the ADE (7.2–9.9%) and adjacent soils (8.0–
11.3%). However, with the exception of Dona Stella site,
a relatively higher degree of aliphaticity was found from
ADE (0.52–1.23) than adjacent soils (0.31–0.50), suggesting
that the bulk SOM in ADE is at an advanced stage of humi-
fication and that the more labile aliphatic components have
probably been decomposed at this stage. Thus the apprecia-
ble amounts of aliphatic-C moieties observed in these
anthropic soils could most probably be contributions from
the more refractory aliphatic-C biopolymers of non-BC ori-
gin. These results complement our observations using 13C
NMR and Sr-FTIR-ATR spectroscopy of SOC from ADE.

4. CONCLUSIONS

Using integrated solid-state 13C CP-MAS NMR and Sr-
FTIR-ATR and C (1s) NEXAFS spectroscopy, we were
able to identify the various organic C functionalities and
effectively fingerprint the structural composition of SOC
in ADE. The molecular-level information generated by
these complementary spectroscopic techniques led us to
conclude that the structural composition of SOC in ADE
was markedly altered due to anthropogenic interventions
and that the functional group chemistry of SOM in ADE
is considerably different from adjacent soils. Amazonian
Dark Earths were largely dominated by: (i) aromatic-C
structures stemming from H- and C-substituted aryl-C,
(ii) O-rich organic C functionalities possibly from carbox-
ylic-C, aldehyde-C, ketonic-C, and quinine-C, and (iii) a di-
verse group of refractory aliphatic-C moieties. The SOC in
adjacent soils was enriched with O-alkyl-C, methoxyl-C/N-
alkyl-C structures, as well as with some elements of labile
aliphatic-C functionalities. Our study suggests that intrinsic
molecular structures of organic C due to selective accumu-
lation of highly refractory aryl-C polymers seems to be the
key factor for the biochemical recalcitrance and the con-
ferred stability of SOC in ADE. Anthropogenic enrichment
by charred carbonaceous residues from biomass-derived
BC seems to be the main source of these highly refractory
polyaromatic structures. The abundance of O-rich organic
C structures in ADE could partly be the result of partial
oxidation of the polyaromatic core of biomass-derived BC
particles. However, since partial oxidation of polyaromatic
structures alone cannot account for the large proportions of
O-containing organic C functionalities, as well as for ali-
phatic-C components that persisted for millennia in these
anthropic soils, our results also highlighted the complemen-
tary role that might be played by organic C compounds
composed of these moieties as an additional or secondary
sources of chemical recalcitrance of C in ADE. These or-
ganic C compounds could be the products of: (i) primary
recalcitrant biomolecules from non-BC sources or (ii) sec-
ondary processes involving microbially mediated oxidative
or extracellular neoformation reactions of organic C from
non-BC and BC sources, and stabilized either through
physical inaccessibility to decomposers due to sorption on
the surface or into porous structures of BC particles, inher-
ent resistance to biochemical oxidation, or intermolecular
interactions involving clay and BC particles that can con-
siderably reduce availability and rate of degradation of
these substrates due to complexation and changes in
conformation. The presence of large proportions of aro-
matic-C, carboxylic-C, and aliphatic-C structures and their
persistence for millennia in these BC-rich anthropic soils is
of wider ecological importance at the global level, not only
from the standpoint of serving as a sink for fast-cycling C,
but also from agricultural and environmental sustainability
perspective since: (i) carboxylic-C and aromatic OH con-
tents could influence CEC and the capacity of soils to form
complexes with metal ions and (ii) the presence of
(poly)methylene structures may promote sorption of non-
ionic hydrophobic organic pollutants such as pesticides.
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