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1  | INTRODUC TION

Soil plays an essential role in the global carbon (C) cycle acting 
as both a source and sink of organic C (Bender, Wagg, & van der 
Heijden, 2016; Lal, 2004, 2008; Osuri et al., 2016; Schuur et al., 
2015). Soil contains three times more organic C than is contained 
in plants and the atmosphere, and while soil is classically viewed 
as a C sink on a global scale there is concern that climate and 
land use change will turn it into a C source (Bardgett, Freeman, & 

Ostle, 2008; Bond‐Lamberty, Bailey, Chen, Gough, & Vargas, 2018; 
Cotrufo, Wallenstein, Boot, Denef, & Paul, 2013; Lal, 2004). Such 
a source‐sink switch could not only be brought about by a change 
in the physical and chemical state of soil, but also through changes 
in soil biota and their interactions with plants (Bender et al., 2016; 
Davidson & Janssens, 2006; Osuri et al., 2016). Indeed, soil biota 
plays a pivotal role in soil C dynamics, especially in relation to stabi‐
lization of soil organic matter (SOM) and persistence of soil organic 
C (SOC).
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Abstract
The persistence of soil organic carbon (SOC) has traditionally been explained as a 
combination of recalcitrance properties and stabilization processes, which lead to 
the formation of complex organic compounds. However, recent conceptual advances 
and experimental evidence challenge this view. Here, we test these conceptual ad‐
vances using a dynamic equilibrium theory of SOC founded on classic ecological 
theory. We postulate that the persistence of SOC is an equilibrium point where SOC 
losses resulting from continuous decomposition and SOC gains due to SOC protec‐
tion are balanced. We show that we can describe the temporal dynamics of SOC re‐
markably well (average and median R2 = 0.75) in publicly available SOC time series 
from experiments that investigated the effects of agricultural practices in arable 
soils. The predictive power of our simplistic model is not meant to compete with that 
of current multi‐pool SOC models or recent developments that include microbial 
loops. The simplicity of our analysis can, however, show how the conceptual distinc‐
tion between the forces that control SOC loss and gain, and their equilibrium, can 
shed light on SOC dynamics. Specifically, our analysis shows that, regardless of spe‐
cific mechanisms, the persistence of SOC will depend on the ultimate equilibrium 
between SOC gains and losses, which may depend on environmental (e.g. tempera‐
ture) and ecological (e.g. spatially structured microbial activities) factors and the rela‐
tive roles of these factors. Future experimental studies should quantify these roles to 
formulate a new generation of SOC dynamics model.
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The traditional view is that dead plant material and other bi‐
ological materials are degraded by soil organisms into organic 
compounds, such as large humic substances that are highly resis‐
tant to further decomposition, thereby stabilizing SOM (Brady 
& Weil, 1996; Tan, 2014). Also, the chemical properties of or‐
ganic inputs to soil have traditionally been considered to be the 
starting point for estimating C turnover rate because they de‐
termine the resistance of soil organic compounds to degradation 
(a property loosely definable as “recalcitrance”). Accordingly, 
current models of C dynamics (there are at least 30, as reviewed 
in Falloon & Smith, 2009) explicitly incorporate the traditional 
ideas of recalcitrance (i.e. resistance to degradation due to 
chemical properties) and chemical stabilization (due to abiotic 
and biotic formation of humic substances). For example, two 
of the most widely used models, RothC (Coleman & Jenkinson, 
1996) and CENTURY (e.g. Parton, 2010; Parton, Schimel, Cole, & 
Ojima, 1987; Parton et al., 1994) are both founded on the tradi‐
tional concepts of SOM recalcitrance and SOM stabilization via 
humification. RothC focuses primarily on soil processes to pre‐
dict SOM and SOC temporal trajectories (i.e. it does not model 
aboveground ecosystem processes), whereas CENTURY includes 
both soil processes and aboveground primary production in the 
model. Both models account for varying quality of SOC inputs. 
For example, RothC uses the ratio of decomposable to resistant 
plant material as a driver of SOM decomposition rates, while 
CENTURY uses the lignin to N ratio, which determines in which 
proportion litter contributes to more resistant and more labile 
SOM compartments. RothC and CENTURY both use clay con‐
tent as major variable to partition fluxes of C between various 
discrete SOM pools, with each pool characterized by a specific 
decomposition rate and the lowest decomposition rates are as‐
signed to the humified organic matter.

Traditional models of SOM neglect to explicitly include that 
decomposition of SOM is dependent on ecological context, es‐
pecially microbial distribution and activity, and the presence of 
substrates that activate decomposition processes. For example, 
even compounds such as lignin, traditionally considered very re‐
calcitrant, can have a turnover rate higher than that of bulk SOM 
(Schmidt et al., 2011). Conversely, compounds that are tradi‐
tionally considered labile, such as root exudates and microbially 
derived cytoplasmic materials, can persist for decades and are in‐
creasingly recognized as a key constituent of relatively persistent 
SOM (Kallenbach, Frey, & Grandy, 2016). Also, the formation of 
aggregates, together with the adsorption of simple and small com‐
pounds into mineral surfaces, plays a fundamental, yet underesti‐
mated, role in SOM protection (Lehmann & Kleber, 2015). These 
findings, along with recent re‐conceptualization of the nature of 
soil organic matter, are profoundly changing traditional views of 
SOC persistence (Lehmann & Kleber, 2015). These advances pro‐
pose that the persistence of soil organic matter can emerge from 
the interaction between physicochemical and biological processes 
that simply reduce the probability of SOM decomposition and/
or increase the probability of SOM accumulation (Schmidt et al., 

2011). Therefore, SOC and SOM persistence is considered to be 
an emergent ecosystem property rather than the result of intrinsic 
chemical properties of SOM.

Lehmann and Kleber (2015) recently proposed the Soil 
Continuum Model (SCM) whereby SOM consists of an array of 
compounds covering the whole spectrum of large, undecom‐
posed plant fragments, too small‐sized, easily decomposable 
monomers. Thermodynamically, the distribution of these com‐
pounds must follow a downhill energetic trajectory with more 
complex compounds progressively broken down into simpler and 
smaller compounds. As compounds become simpler and smaller, 
their reactivity toward minerals, and thus the likelihood of being 
protected within aggregates, increases. Also, the spatially het‐
erogeneous distribution of SOM and microbes can physically 
disconnect SOM and decomposers (Schmidt et al., 2011). As ar‐
gued by Lehmann and Kleber (2015), SOM and SOC are func‐
tions of the state of a dynamic system where decomposition 
and the formation of aggregates, and adsorption of simple and 
small compounds onto mineral surfaces, are balanced. As such, 
SOC is in a state of dynamic equilibrium whereby continuous 
losses are counterbalanced by continuous gains (Janzen, 2006, 
2015). Under such conditions, SOC can remain at an equilibrium 
level over many decades, if not centuries (Johnston, Poulton, & 
Coleman, 2009). Overall, if conditions remain relatively stable, 
the persistence of SOC at this equilibrium level does not require 
the formation of recalcitrant SOM sequestering SOC perma‐
nently (Lehmann & Kleber, 2015), but just a balance between 
SOC losses and gains.

Here, we used the SCM concept to develop a dynamic equi‐
librium theory of SOC in which the persistence of SOC is the 
equilibrium point resulting from continuous SOC mineralization 
and gains due to C input and the extent to which SOM protec‐
tion (e.g. aggregate formation) affects turnover rates. We aimed 
to show that assumptions of the soil continuum model can be 
translated into quantitative models that, in contrast to tradi‐
tional SOC pool models, invoke neither a chemical stabilization 
nor the variable recalcitrance of discrete SOM pools. We fit‐
ted the model to 67 publicly available SOC time series obtained 
from 14 field experiments investigating the effects of agricul‐
tural practices on SOC in arable soils spanning timescales of 
10–115 years. We first test whether the model can accurately 
describe the temporal variation of SOC starting from the idea 
that the temporal variation of SOC loss and gain rates are func‐
tions of SOC amounts (Six, Conant, Paul, & Paustian, 2002). We 
then show with this simple model that invokes neither recalci‐
trance nor distinct pools of SOC, that SOC persistence results 
from the ultimate equilibrium between SOC gains and losses, 
which may depend on environmental (e.g. temperature) and eco‐
logical (e.g. spatially structured microbial activities) factors and 
the relative roles of these factors. Our overarching goal was to 
examine SOC persistence based on the Soil Continuum Model to 
offer ecological insights for the next generation of experimental 
studies of SOC dynamics.
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2  | THEORETIC AL CONCEPTS, 
A SSUMPTIONS, AND MODEL DERIVATION 
AND PAR AMETERIZ ATION

In the framework of the SCM, the first step to developing an equilibrium 
theory of SOC dynamics is defining how rates of C loss and gain de‐
pend on soil state variables (i.e. the quantitative variables that describe 
the state of a soil system). There are many state variables that we could 
potentially start from, but the simplest is the amount of SOC. This 
choice is analogous to continuous population dynamic models where 
population growth rate is a function of population size (Chase, 2000). 
In the first instance, we assume that the instantaneous rate at which 
SOC is either lost or gained depends on the current state (i.e. quan‐
tity) of SOC. The use of SOC amounts as a state variable in C cycling 
models is justified by correlative evidence. For example, the rate of C 
accumulation (here “gain”) has been shown to be highly and negatively 
correlated with SOC in agricultural fields following land abandonment 
(Knops & Tilman, 2000), while estimated rates of organic C loss across 
English and Welsh soils over the period 1978–2003 were found to be 
positively correlated with SOC, although the results might be biased by 
the presence of highly organic soils in the data set (Bellamy, Loveland, 
Bradley, Lark, & Kirk, 2005; but see Schulze & Freibauer, 2005).

In general terms, the idea that the rate of change in SOC is a 
function F of SOC (Csoil) can be expressed as

but we want to distinguish between rate of loss

and rate of gain

 with L and G being the functions that respectively express how 
rates of loss and gain depend on the state variable Csoil. We can 
therefore define the total rate of change as the difference between 
gain G and loss L, that is,

and consider that at equilibrium there is no net change in SOC 
because rate of gain G equals rate of loss L, so that

If the functions G and L in Equations 1 and 2 were known and 
relatively simple (e.g. linear), it would be possible to solve for the 
equilibrium value of C (Ceq). With the above assumptions in mind, we 
propose that the simplest equations regulating organic C losses and 
gains in soil could be

where k, n, and g are intrinsic rates per unit of time (typically in year) 
and Cin is the amount of C entered into the soil per unit of time (i.e. 
input C). For example, in an experiment with organic manures, Cin 
would correspond to the amount of C added to soil through the 
amendment. Equation 3 is consistent with basic (i.e. 1st order ki‐
netics) models of decay rate. Equation 4 expresses that when there 
is very little or no organic C in soil (e.g. at the start of primary suc‐
cession), the rate of C gain is maximum and is proportional to the C 
entering the soil (n Cin). However, as the soil starts to accumulate 
C, the maximum rate of gain will be reduced by a quantity that is 
proportional to SOC (g Csoil). If soil accumulated all C entering at the 
start of the dynamics, final SOC would equal nCin

g
 but this value will 

never be reached because C loss starts to become significant when 
SOC builds up. The dynamics resulting from coupling Equations 3 
and 4 are almost equivalent and mathematically very similar to a 
traditional one‐pool model (Falloon & Smith, 2009) with overall 
decay rate equal to the sum of our g and k rates. However, as we 
show below, there is major conceptual difference between the tra‐
ditional and our approach, namely our distinction between rates 
of losses and gains. This distinction is critical to the development 
of SOC models derived from the soil continuum model because it 
is based on the main assumption that SOM is a continuum rather 
than consisting of discrete pools. Further, this distinction is critical 
because of our assumption that SOC models are independent of 
intrinsic chemical recalcitrance properties of SOM. The concep‐
tual difference between rates of SOC loss and gain becomes clear 
when we represent the two components (i.e. SOC loss and gain rate 
curves) of the simplest possible model in a graph with SOC (Csoil) 
on the x‐axis and the rate of change in SOC on the y‐axis (Figure 1): 
the loss curve (Equation 3, red line in Figure 1) has a positive slope 
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while the gain curve (Equation 4, black line in Figure 1) has a nega‐
tive slope with an intercept equal to the maximum gain rate (which 
would be observable only when SOC is virtually zero). The two 
curves intersect at the equilibrium point, with “Ceq” on the x‐axis 
and “Turnover rate Teq” on the y‐axis. At equilibrium, losses and 
gains continue to occur but because they are equal, SOC is at a 
stable value while C is continually turned over at some rate Teq. 
Theoretically, a mechanistic understanding of the controls on C dy‐
namics is equivalent to experimentally identifying the abiotic and 
biotic factors that determine the slopes of the gain and loss curves. 
These curves do not need to be linear as nonlinear curves may also 
imply multiple equilibria. Here, we limit ourselves to show the sim‐
plest possible formulation of our model and focus on a theoretical 
discussion of our results and assumptions, and how the latter allow 
deriving models that can describe SOC dynamics well.

When the gain and loss curves are linear, simple algebra, and 
geometric considerations (Supporting Information Appendix S1, part 
a) show that

where Ceq is C at equilibrium and Teq is C turnover at equilibrium. 

The full solution of the dynamic model (for derivation see Supporting 
Information Appendix S1, part b) is

The solution of Equation 7 provides a nonlinear model 
(Supporting Information Appendix S1, part c) that can be statistically 
tested on SOC time series as

where t is time, equilibrium a=Ceq=
n

g+k
Cin, h=

nCin−C0(g+k)

g+k
, and 

c equals the sum of intrinsic rates of loss k and gain g (compare 
Equations 7 and 8 to relate the compound parameters h and c 
to the fundamental parameters of the loss and gain curves). In 
practice, the c parameter regulates SOC turnover at equilibrium 
and the velocity at which SOC achieves the equilibrium value 
(Figure 2a,b). In this simple formulation of the model, if at initial 
time t0, SOC equals C0 and is smaller than equilibrium SOC (i.e. 
C0 < Ceq) as it may happen during a succession or restoration pro‐
cess, SOC will increase monotonically until equilibrium is reached, 
which corresponds to scenarios where the parameter h is positive 
(Figure 2a,c). Vice versa, if the initial equilibrium point decreases 
because conditions are changed by some disturbance factor (e.g. 
change from no to conventional tillage) SOC will for a period of 
time be higher than the new equilibrium and will decrease expo‐
nentially until it reaches its new equilibrium value: in this case, 
h is negative (Figure 2b,d). These two examples show that the 

parameter h reflects initial conditions (specifically, C0 relative to 
Ceq). The effect of changing model parameters can be explored 
using the R script provided in the Supporting Information Data S2.

The nonlinear model of Equation 8 can be fitted to experimental 
time series of SOC. In these time series, stocks of SOC are com‐
monly expressed either as t/ha to a certain soil depth (i.e. Mg/ha in 
SI), g/kg, or mg/g (Supporting Information Data S1). Information on 
soil bulk density (g/cm3) and soil depth (cm) can be used to convert 
SOC stocks from unit of area (ha−1) to unit of soil weight (kg−1 or 
g−1). In the literature, rates of SOC loss and gain are typically ex‐
pressed in year−1. For example, rate of loss L(Csoil) or turnover rate 
at equilibrium Teq can be expressed as t ha−1 year−1 or g kg−1 year−1. 
Accordingly, the rate parameters k, g, and n of our model can be 
expressed in unit of time−1 as year−1. Once units have been defined, 
the nonlinear model of Equation 8 can be fitted to time series to es‐
timate the value of the key, individual parameters k, g, and n, which 
are embodied in the parameters h and c of the nonlinear model in 
Equation 8. First, once h and c are estimated by fitting this version 
of the model (Equation 8 to the time series, parameter n can be esti‐
mated because C0 and Cin are usually known. C0 is the initial SOC and 
Cin (C in input) is usually known in experimental plots. For example, 
in farmyard manure treatments the amount of organic C added with 
manure may be around 3 t ha−1 year−1. Then, the parameters g and k 
can be estimated as follows: when initial SOC is well below equilib‐
rium SOC (C0 ≪ Ceq; e.g. Figure 2a), the initial dynamic is dominated 
by C gain, which allows an estimate of g using Equation 4. When 
initial SOC is well above the equilibrium (C0 ≫ Ceq; e.g. Figure 2b), 
the dynamic is initially dominated by C loss, and k can be estimated 
using Equation 3 on the first part of the time series. The estimate of 
one of these two rates (either k or g) allows the estimate of the other 
rate via the parameter c, which equals the sum of k and g.

3  | TESTING THE MODEL

We used a publicly available database created for the Swedish 
Foundation for Strategic Environmental Research (http://www.
eviem.se/en/projects/Soil-organic-carbon-stocks/). This global 
database is linked to a systematic GIS map of 735 scientific pub‐
lications reporting data on the effects of agricultural practices on 
SOC of arable soils (Haddaway et al., 2015). Each study is geo‐
referenced on a global map and most studies are accessible via 
Google Scholar. Metadata associated with the database allowed 
us to search for adequate time series. Specifically, we filtered the 
records for studies having times series with at least six data points 
covering 10 years, and we then searched each paper for figures or 
tables that could be used to recover the time series data points. 
Eventually, we used 11 papers from the database for a total of 60 
time series data sets (Buysse, Roisin, & Aubinet, 2013; Campbell, 
Zentner, Selles, Liang, & Blomert, 2001; Clapp, Allmaras, Layese, 
Linden, & Dowdy, 2000; Fließbach, Oberholzer, Gunst, & Mäder, 
2007; Gan et al., 2012; Heenan, Chan, & Knight, 2004; Hendrix, 
Franzluebbers, & McCracken, 1998; Hernanz, Sánchez‐Girón, 

(5)Ceq=
n

g+k
Cin

(6)Teq=
kn

g+k
Cin

(7)Csoil(t)=
n

g+k
Cin −

nCin−C0(g+k)

g+k
e−(g+k)(t−t0).

(8)SOC=a −he−c t,

http://www.eviem.se/en/projects/Soil-organic-carbon-stocks/
http://www.eviem.se/en/projects/Soil-organic-carbon-stocks/
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& Navarrete, 2009; Kätterer, Börjesson, & Kirchmann, 2014; 
Seremesic, Milosev, Djalovic, Zeremski, & Ninkov, 2011; Zanatta, 
Bayer, Dieckow, Vieira, & Mielniczuk, 2007). In addition, we used 
seven long‐term time series of SOC from field experiments con‐
ducted at Rothamsted, England (Johnston et al., 2009). All 67 
time series we analyzed were obtained from experiments (see 
Supporting Information Data S1) investigating how SOC changes 
over time in response to various combinations of fertilizer (e.g. 
farmyard manure vs. mineral N and P), tillage (e.g. conventional 
vs no tillage), management (e.g. organic vs. conventional farming), 
and rotation regimes. We tested the nonlinear model of Equation 8 
on these 67 real‐time series using the function nls in the R pack‐
age nlme (see Supporting information for R script and Supporting 

Information Data S3; DataSet.txt; see also further information 
provided in Supporting Information Appendix S1).

The formulation of the model as shown in Equation 8 could be 
fitted to 39 out of 67 time series (Supporting Information Data S1). 
These 39 time series showed a simple monotonic increase or decrease 
in SOC toward a theoretical equilibrium SOC, implying relatively con‐
stant abiotic and biotic conditions (i.e. SOC equilibrium point is not 
changing over time) and initial SOC higher or lower than equilibrium 
SOC (i.e. SOC changes over time to reach the equilibrium point). More 
complex multi‐pool models, but also one‐ or two‐pool C models, are 
likely to fit the same data equally well or better, but our aim here was 
not to provide a better alternative to current SOC models. Sufficiently 
complex mathematical models will always describe SOC temporal 

F I G U R E  2   Effects of parameter h and c on soil organic carbon (SOC) dynamics. In (a,b) parameter c is varied (different colors) for positive 
and negative h, respectively. These show how c regulates the velocity at which SOC reaches its equilibrium value “a”. They also show that 
positive h is observed when initial SOC is lower than equilibrium (panel a) while negative h corresponds to initial SOC higher than equilibrium 
(panel b). In (c,d) the effect of varying h is shown for positive and negative values of h, respectively. Panels (c,d) illustrate how h mostly 
reflects initial conditions, especially the difference between initial SOC and equilibrium SOC
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dynamics to a high degree of accuracy and precision, and a large num‐
ber of models can be fitted to any SOC time series until the best fit‐
ting model is found, regardless of model assumptions. Yet, we aimed 
to examine whether a simplistic formulation of our model fit a range 
of SOC time series because we wanted to offer a first quantification 
of the soil continuum model and propose new directions for SOC 
modeling. Indeed, and as expected, the specific formulation of our 
model as in Equation 8 could not be fitted successfully to time series 
obtained under experimental regimes whereby treatments caused 

important and confounding changes in conditions over time (e.g. rota‐
tion; Supporting Information Data S1). In a few cases, some treatment 
combinations had very little effect on SOC, which might have fluctu‐
ated around the equilibrium point, as for instance observed in some 
of the time series reported by Heenan et al. (2004) (see details in 
Supporting Information Data S1). When the model could be fitted, we 
found that model fit was very good, and in most cases excellent (see 
examples Figure 3. Full results are given in Supporting Information 
Data S1), especially considering the noise potentially observable in 

F I G U R E  3   Nine examples of model fit to real‐time series (full set is given in the Supporting Information Data S3). Time series (a–d) are 
from Johnston et al. (2009) and come from: (a) farmyard manure applied annually since 1885; (b) long‐term grassland subjected to ploughing; 
(c) unploughed long‐term grassland; (d) arable cropping under newly sown grass. Hendrix et al. (1998) offered an interesting comparison 
of: (e) a natural succession process after the conversion of degraded soils from row cropping to sod or kudzu (Pueraria lobata); (f) and the 
plowing of native forest soil followed by long‐term, intensive row cropping. Kätterer et al. (2014) reported the effects of various types of 
fertilizers and here we show their series for: (g) compost obtained from domestic waste; (h) and manure from a from a cowshed with straw 
bedding. Finally, in (i) a SOC time series from a fallow‐wheat rotation with N and P fertilizers as reported in Gan et al. (2012). The coefficient 
of determination was calculated using a pseudo‐R2 (also known as generalized R2; Nagelkerke, 1991), which is based on a null model to 
estimate model log‐likelihood ratio
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long‐time series data of SOC in arable soil. Nevertheless, as hypoth‐
esized by Johnston et al. (2009), most of the studies we investigated 
(Figure 3, Supporting Information Data S1) provided clear evidence 
that SOC eventually reaches an equilibrium point or fluctuates around 
an average value that might be interpreted as the equilibrium point.

The parameter estimates obtained from the time series used in 
this study (Supporting Information Data S1) show that rates of loss 
and gain vary between 0.001 and 0.1 year−1, although more extreme 
values are possible.

4  | DETERMINANTS OF LOSS AND GAIN 
R ATES AND FUTURE DIREC TIONS

Temporal variation in SOC loss and gain drives the dynamics of SOC, 
but many factors can determine this variation. In the basic version of 
the model, SOC dynamics depend on the mathematical shape of the 
functions that describe the rates of loss and gain. In the framework 
proposed here, a mechanistic understanding of the SOC dynamics 
coincides with an experimental investigation of the factors that de‐
termine the shape of the gain and loss curves. This shape can be 
complex, but here we just illustrate the equilibrium approach using 
the simplest possible model formulation. More complex models, ei‐
ther traditional ones or the equivalent ones we could derive from 
our approach, can certainly fit the data presented better than the 
simplistic version illustrated here. However, the simple formulation 
we present here and our conceptual approach may offer new per‐
spectives on the processes that determine SOC variation in soil. For 
example, the factors that drive SOC loss and gain can be introduced 
as either categorical or continuous variables that affect the shape 
of the SOC loss and gain curve over time, space, and/or treatments. 
Any model, including ours and traditional models using conceptual 
pools, cannot provide mechanistic insights in their own right. But 
if models are coupled with appropriate experiments then they can 
help to tease apart the factors that mechanistically control SOC dy‐
namics. For example, in the case of our model, let us consider the 
simplest possible formulation (Figure 1) and assume that the loss 
and gain curve were both linear functions of SOC (Equation 3 and 
4). Under this assumption, the abiotic and biotic factors that affect 
loss and gain can simply be introduced as variables that change the 
slope of the SOC loss and gain lines (Figure 4) and experiments can 
be designed to quantify the effect of these factors.

The major conceptual difference between our approach and 
the more traditional ones, such as one‐pool or two‐pools models, 
is that in our case the persistence of SOC emerges from the dif‐
ference between loss and gain and the dynamic equilibrium that 
maintains this difference, regardless of whether and which factors 
affect either loss or gain, or both. For example, tillage is known to 
reduce the abundance of earthworms, arbuscular mycorrhizal, and 
decomposer fungi, root‐feeding fauna and their predators, with di‐
rect and indirect effects on rates of C loss and gain (Postma‐Blaauw, 
de Goede, Bloem, Faber, & Brussaard, 2010; Tsiafouli et al., 2015; de 
Vries et al., 2013). Regardless of the specific mechanisms via which 

tillage affects soil physical and chemical properties and biota, we can 
use our model to describe the impact of tillage as an effect on the 
slope of either the loss or the gain curve (Figure 4). In the example 
of tillage, we could either assume that the mechanical perturbation 
caused by tillage increases rate of SOC loss over time or decreases 
the rate of SOC gain. Actual experiments can resolve which mecha‐
nism is dominant in specific contexts.

Let us hypothesize that tillage causes detrimental changes in 
soil biotic and abiotic conditions, and that these changes increase 
the slope of the loss curve as shown in the Loss.after curve versus 
the Loss.before curve (Figure 4). This change moves the equilibrium 
point to the left (lower SOC: Ceq.after < Ceq.before) because an increase 
in loss rate with no increase in gain rate must accelerate turnover 
(Teq.after > Teq.before) via losses. The hypothesis that tillage acceler‐
ates SOC turnover or lowers the equilibrium SOC could be tested 
by fitting a “blocked” version (Supporting Information Appendix S1) 
of the nonlinear model in Equation 8) to time series obtained during 
investigation of the impact of tillage on SOC persistence. Blocks 
are different experimental groups. The blocked model works as 
follows: the factor “tillage”, which could consist of various levels 
(e.g. control, moderate, intense), could be explicitly introduced in 
the model as a categorical variable that controls the average value 
of the model parameters a (equilibrium), c (loss and gain rates), and 
h (input and initial condition) in Equation 8. Other experimental fac‐
tors such as organic matter application or land use conversion could 
be investigated likewise (see for example the comparison offered 
in Figure 3e,f, which reports two‐time series from a study of land 
use conversion and the model fit). Thus, experimental factors that 
drive the values of model parameters are relatively straightforward 
to introduce in the simple formulation of Equation 8.

The example of tillage conceptually demonstrates the ability of the 
equilibrium idea to accommodate scenarios in which the distinct processes 

F I G U R E  4  A scenario in which soil organic carbon (SOC) 
responds to a perturbation just by increased loss rates. This means 
that the slope of the loss rate curve (red line) increases (compare 
dotted and solid red lines, which correspond to loss rate before and 
after perturbation, respectively). This change moves the equilibrium 
point leftwards, with Ceq.after < Ceq.before: The increase in loss rate is 
not balanced by an increase in gain rate and overall the systems are 
also accelerating SOC turnover (Teq.after > Teq.before)
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of SOC loss and gain vary as a function of the biotic and abiotic factors 
that determine SOC loss and gains. Scenarios with high turnover rate and 
high SOC are also possible (Figure 5, see also Supporting Information 
Appendix S1 Part C). Additionally, the slope of the loss and gain curves can 
also be made function of continuous abiotic and biotic variables (e.g. mi‐
crobial biomass), which also vary over time. Also, the loss and gain curves 
could be nonlinear or could have time‐dependent slopes. Equilibrium SOC 
can then be made to fluctuate over time, depending on the fluctuations of 
the variables driving the rate of SOC loss and gain. Possible examples of 
these scenarios and how to change the model equations are offered in the 
Supporting Information Appendix S1 (part c) but the general point is that 
the mathematical complexity of the model can be increased to accommo‐
date scenarios in which: (a) equilibrium SOC varies over time because of 
temporal variation in the rates of either SOC gain or losses; (b) there are 
multiple determinants of both SOC gain and losses. The simplest formula‐
tion of our model could fit 39 out of the 67 time series used in the present 
analysis and in some cases the fit was excellent (see for example the nine 
cases illustrated in Figure 3). This suggests that our process‐based idea of 
equilibrium is a promising starting point for the formulation of future SOC 
models, besides the incorporation of the specific mechanisms that deter‐
mine the rates of SOC gain and loss. The simple version of the model does 
not account for variation in abiotic and biotic conditions over time, which 
determines unaccounted variation in rates of SOC gain and loss and may 
explain the failure of the model in fitting some of the time series data con‐
sidered here. Another important reason is that some of the observed time 
series may actually display erratic variation around the equilibrium SOC 
simply because the experimental treatments did not exert the effects 

which were meant to be exerted. A further investigation of this variation 
should clarify the mechanisms underpinning this seemingly erratic varia‐
tion (e.g. seasonal fluctuation in microbial community structure and ac‐
tivity, and OM input). Once these mechanisms are identified they can be 
incorporated into the functional shape of the gain and loss functions in 
order to formulate models that can better reflect the processes determin‐
ing SOC variation over time and thus accommodate specific patterns of 
temporal fluctuations in SOC. More generally, the conceptual framework 
we have introduced here can in the future accommodate the actual, mul‐
tivariate complexity that regulates SOC dynamics (Falloon & Smith, 2009; 
Sihi, Gerber, Inglett, & Inglett, 2016; Sihi, Inglett, Gerber, & Inglett, 2018), 
including, but not limited to, plant–soil interactions in the context of global 
change over multiple scales (Bardgett, Manning, Morrien, & Vries, 2013; 
van der Putten et al., 2013) and SOC spatial heterogeneity as linked to mi‐
crobial dynamics (Kaiser, Franklin, Richter, & Dieckmann, 2015; Lehmann 
et al., 2008; Lehmann & Kleber, 2015).

5  | CONCLUSION

We show that, in line with recent conceptual advances in soil organic 
matter theory, variation in the rate of SOC loss and gain, and their 
balance over time, can be modeled effectively as a direct function of 
SOC itself, without invoking processes of chemical stabilization of 
SOM and the property of SOM recalcitrance, which underpin cur‐
rent dynamic models of SOC. Our model also allows incorporating 
the influence of abiotic and biotic factors to test and model eco‐
logical mechanisms that determine SOC dynamics. In addition, our 
model offers a quantitative framework for future experiments aimed 
at quantifying the relative roles of the ecological drivers of SOC dy‐
namics across spatial and temporal scales.
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