
Supplementary Information 

a) Equilibrium and turnover 

We start from the loss and gain equations: 

 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝑘𝑘 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

 𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑑𝑑𝑑𝑑

= 𝑛𝑛 𝐶𝐶𝑠𝑠𝑖𝑖 − 𝑔𝑔 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

and express the rate of variation of C in soil (SOC) as the difference between the 

rates at which C is gained and lost, that is 

𝑑𝑑𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑛𝑛𝐶𝐶𝑠𝑠𝑖𝑖 − 𝑔𝑔𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑘𝑘𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

At equilibrium the net rate of change is zero and so we can solve for organic C in soil 

as follows: 

 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙
𝑑𝑑𝑑𝑑

= 0 → 0 = 𝑛𝑛𝐶𝐶𝑠𝑠𝑖𝑖 − 𝑔𝑔𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑘𝑘𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

leading to  

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑛𝑛

𝑔𝑔 + 𝑘𝑘
𝐶𝐶𝐶𝐶𝑛𝑛 

Turnover is the value of either loss or gain rate, which are never null but just equal at 

equilibrium. To find this value, we need to solve for either the rate of loss or that of 

gain when Csoil equals Csoil.eq.. For example, if we use the simpler loss curve we 

obtain 

𝑑𝑑𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑘𝑘 �
𝑛𝑛

𝑔𝑔 + 𝑘𝑘
�𝐶𝐶𝑠𝑠𝑖𝑖 = 𝑇𝑇𝐶𝐶𝐶𝐶 

 

 

 

 



b) Full Solution 

We can fully solve the ordinary differential equation for SOC 

𝑑𝑑𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑛𝑛𝐶𝐶𝑠𝑠𝑖𝑖 − 𝑔𝑔𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑘𝑘𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

by separation of variables (Robinson 2004), which leads to: 

�
1 

𝑛𝑛𝐶𝐶𝑠𝑠𝑖𝑖 − (𝑔𝑔 +  𝑘𝑘)𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑑𝑑𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = � 𝑑𝑑𝑑𝑑

𝑑𝑑

𝑑𝑑0

𝑑𝑑

𝑑𝑑0
 

The right hand side is obvious, the indefinite solution being just t plus a constant. 

To solve the left hand side, we use the following well known indefinite integral: 

�
1 

𝑎𝑎 − 𝑏𝑏 𝑥𝑥
 𝑑𝑑𝑥𝑥 = −

log(𝑎𝑎 − 𝑏𝑏 𝑥𝑥)
𝑏𝑏

 

And we take nCin = a, (g+k) = b, and Csoil = x being the variable of integration. That 

leads to 

 

��−
log (𝑛𝑛𝐶𝐶𝑠𝑠𝑖𝑖 − (𝑔𝑔 +  𝑘𝑘)𝐶𝐶)

(𝑔𝑔 + 𝑘𝑘)
� − �−

log (𝑛𝑛𝐶𝐶𝑠𝑠𝑖𝑖 − (𝑔𝑔 + 𝑘𝑘)𝐶𝐶0)
(𝑔𝑔 + 𝑘𝑘)

�� = |𝑑𝑑 − 𝑑𝑑0| 

which by rearranging terms and exponentiation becomes: 

𝑛𝑛𝐶𝐶𝑠𝑠𝑖𝑖 − (𝑔𝑔 + 𝑘𝑘)𝐶𝐶0
𝑛𝑛𝐶𝐶𝑠𝑠𝑖𝑖 − (𝑔𝑔 + 𝑘𝑘)𝐶𝐶

= 𝐶𝐶(𝑑𝑑−𝑑𝑑0)(𝑔𝑔+𝑘𝑘) 

in which C is SOC at time t, or Csoil(t). By rearranging the terms to resolve for C we 

then obtain the full solution: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑑𝑑) =
𝑛𝑛

𝑔𝑔 + 𝑘𝑘
𝐶𝐶𝐶𝐶𝑛𝑛 −

𝑛𝑛 𝐶𝐶𝐶𝐶𝑛𝑛 − 𝐶𝐶0(𝑔𝑔 + 𝑘𝑘)
𝑔𝑔 + 𝑘𝑘

𝐶𝐶−(𝑔𝑔+𝑘𝑘)(𝑑𝑑−𝑑𝑑0) 

 

 

 



c) Nonlinear statistical models  

The full solution expresses SOC as a function of time and is rewritable in a general 

way as 

𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑎𝑎 − ℎ 𝐶𝐶−𝑐𝑐 𝑑𝑑 

Where a = 𝑖𝑖
𝑔𝑔+𝑘𝑘

𝐶𝐶𝐶𝐶𝑛𝑛 , h = 
𝑖𝑖 𝑑𝑑𝑠𝑠𝑖𝑖−𝑑𝑑0(𝑔𝑔+𝑘𝑘)

𝑔𝑔+𝑘𝑘
 and c = (g+k), while C, t and e are obviously 

carbon, time and the Napier number (exponentiation).This is a saturation function 

levelling off at a, the equilibrium SOC level. The rate at which the function levels off 

is fundamentally governed by c, which is the sum of g and k, the intrinsic rates of C 

gain and loss respectively. Over time, the exponential term tends to zero, and C 

settles at a. 

Any time series can be fitted with this model, which is particularly intuitive in a 

situation where soil is initially well below its equilibrium but then builds up over time 

to reach equilibrium. The nonlinear model is easy to fit to times series of SOC, where 

C (SOC) is the dependent variable x and time is the independent variable y. For 

example, in R using the function nls in package nlme one can fit the model as follows 

(Ritz & Streibig 2008 see also Supplementary File R_Script) 

library(nlme) 

ModelFit1<- nls(Cdata ~ a-h*exp(-c*time),data = datamodel, start = list(a = 25, h = 

0.08, c = 2))  

In this line of code, we assume that data are stored in the data framework 

“datamodel”, and the list of initial parameter values is based on a preliminary 

estimate, which is usually based on a quick inspection of the data (basically, in this 

case by plotting C against time). 

The interesting aspect is that one can easily expand the model to include factors and 

variables that might modify model parameters. For example, g and k might depend 

on the fungal to bacterial ratio or one may introduce the effect of particular 

treatments on the parameters (e.g., management types such as extensive vs 

intensive). 



Assume two time series from the same area: in time series “In”, soil was under 

intensive management, while in time series “Ex” soil was under extensive 

management. Data are thus grouped by the factor “management” (Man), which 

consists of two levels (intensive vs extensive). We can then test the hypothesis that 

management affects gain and loss rates by fitting a nonlinear model as follows:  

ModelFit_Groups<- nls(Cdata ~ a[Man]-(h[Man])*exp(-c[Man]*time),data = 

datamodel, start = list(a = c(25,35) h = c(0.08,0.09), b = 2))  

Where a[Man] and h[Man] means that model parameters may differ between the two 

levels of the factor Man, that is between In and Ex. In the initial parameter values, for 

example, we guess that In might be around 25 t C ha-1 while Ex around 35 t C ha-1. 

Random effects due to location or plot can be introduced in this statistical modelling 

framework by using the facilities provided in functions such as nlme (Pinheiro & 

Bates 2000). 

 

C) Examples of continuous determinants of gain and loss rates  

The relative abundance of fungi and bacteria has for a long time been considered a 

key soil food web property that responds to soil management (e.g., intensive vs. 

extensive) and correlates with processes of C and N cycling (Hendrix et al. 1986; de 

Vries et al. 2006; Kallenbach et al. 2016). Shifts in the relative abundance of fungi 

and bacteria could be introduced in the model to regulate rates of loss and gain, the 

key point being that soil with a high fungal to bacterial ratio are usually characterised 

by high SOC (Hendrix et al. 1986; de Vries et al. 2006, 2013), even when these soils 

might have relatively high soil respiration rates (e.g., de Vries et al. 2013). It is also 

possible that higher SOC determines higher biomasses of fungi and bacteria and 

only experiment can resolve the direction of causality. For simplicity, let’s assume 

that the fungal to bacterial ratio regulates rates of SOC losses. More specifically, 

some literature suggests that a lower fungal to bacterial ratio is correlated to an 

increase of SOC loss rates (Malik et al. 2016), which could in the first instance be 

modelled linearly as follows 

𝑑𝑑𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

=
𝑏𝑏
𝑓𝑓
𝑘𝑘′ 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 



b/f being the bacterial to fungal ratio. This equation suggests that the higher the 

fungal to bacterial ratio the lower the C loss. The fungal to bacterial ratio could, 

however, also increase SOC gains, as shown below. In any case,  an important point 

to note in the context of the relationship between fungal to bacterial ratio, SOC, and 

soil respiration, is that in our model high equilibrium SOC can be maintained at a 

high rate of SOC turnover as long as high rates of SOC losses are compensated by 

high rates of SOC gains (see figure 5 in main text). Such a system can maintain high 

SOC at high turnover rates: a fast turnover of SOC does not necessarily imply net 

SOC losses via increased respiration or leaching. A possible mechanism through 

which losses can be compensated by gains due to increased fungi is the formation of 

soil structure. In fact, increased fungal biomass usually correlates with improved soil 

structure (TIsdall & Oades 1982; Six et al. 2004; Rillig & Mummey 2006). 

Consequently, a simple way to introduce SOC gain via soil structure could be 

 𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑑𝑑𝑑𝑑

= 𝑛𝑛 𝐶𝐶𝑠𝑠𝑖𝑖 −
𝑔𝑔′
𝑑𝑑

 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

d being an index of soil structure such as mean weight diameter or the exponent of 

the power laws that describe the relationship between soil particles size and 

numbers (e.g., Caruso et al. 2011).  

More generally, we can write 

 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝑋𝑋 �𝑓𝑓
𝑏𝑏
�  𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑑𝑑𝐶𝐶𝑔𝑔𝑔𝑔𝑠𝑠𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑛𝑛 𝐶𝐶𝑠𝑠𝑖𝑖 − 𝑌𝑌(𝑑𝑑) 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

were X and Y are respectively functions of f/b (fungal to bacterial ratio) and d (soil 

structure). There are numerous potential shapes for the generic functions X and Y, 

which will need to be investigated in the future and will depend on the mechanistic 

resolution that future experimental studies may allow to achieve. Still, the 

mathematical formalism that introduces these general functions helps with 

conceptualising existing information to develop a new modelling framework. In the 

future, this framework will have to accommodate the actual, multivariate complexity 

known to regulate SOC dynamics. The general point is that the loss and gain 



equations can have functional shapes of any complexity to account for complex 

patterns of temporal variation in SOC. 
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