Supplementary Information

a) Equilibrium and turnover

We start from the loss and gain equations:

\[\frac{dC_{\text{loss}}}{dt} = k \ C_{\text{soil}} \]
\[\frac{dC_{\text{gain}}}{dt} = n \ C_{\text{in}} - g \ C_{\text{soil}} \]

and express the rate of variation of C in soil (SOC) as the difference between the rates at which C is gained and lost, that is

\[\frac{dC_{\text{soil}}}{dt} = nC_{\text{in}} - gC_{\text{soil}} - kC_{\text{soil}} \]

At equilibrium the net rate of change is zero and so we can solve for organic C in soil as follows:

\[\frac{dC_{\text{soil}}}{dt} = 0 \rightarrow 0 = nC_{\text{in}} - gC_{\text{soil}} - kC_{\text{soil}} \]

leading to

\[C_{\text{eq}} = \frac{n}{g + k} C_{\text{in}} \]

Turnover is the value of either loss or gain rate, which are never null but just equal at equilibrium. To find this value, we need to solve for either the rate of loss or that of gain when \(C_{\text{soil}} \) equals \(C_{\text{soil,eq}} \). For example, if we use the simpler loss curve we obtain

\[\frac{dC_{\text{loss}}}{dt} = k \left(\frac{n}{g + k} \right) C_{\text{in}} = T_{\text{eq}} \]
b) Full Solution

We can fully solve the ordinary differential equation for SOC

\[\frac{dC_{soil}}{dt} = nC_{in} - gC_{soil} - kC_{soil} \]

by separation of variables (Robinson 2004), which leads to:

\[\int_{C_0}^{C} \frac{1}{nC_{in} - (g + k)C_{soil}} dC_{soil} = \int_{t_0}^{t} dt \]

The right hand side is obvious, the indefinite solution being just \(t \) plus a constant.

To solve the left hand side, we use the following well known indefinite integral:

\[\int \frac{1}{a - b} dx = -\log \left(\frac{a - b}{x} \right) \]

And we take \(nC_{in} = a, (g+k) = b, \) and \(C_{soil} = x \) being the variable of integration. That leads to

\[\left| \left(-\log \left(\frac{nC_{in} - (g + k)C_{}}{(g + k)} \right) \right) - \left(-\log \left(\frac{nC_{in} - (g + k)C_{0}}{(g + k)} \right) \right) \right| = |t - t_0| \]

which by rearranging terms and exponentiation becomes:

\[\frac{nC_{in} - (g + k)C_{0}}{nC_{in} - (g + k)C_{}} = e^{(t-t_0)(g+k)} \]

in which \(C \) is SOC at time \(t \), or \(C_{soil}(t) \). By rearranging the terms to resolve for \(C \) we then obtain the full solution:

\[C_{soil}(t) = \frac{n}{g+k} C_{in} - \frac{nC_{in} - C_{0}(g + k)}{g + k} e^{-(g+k)(t-t_0)} \]
c) Nonlinear statistical models

The full solution expresses SOC as a function of time and is rewritable in a general way as

\[SOC = a - h e^{-c t} \]

Where \(a = \frac{n}{g+k} C_{in} \), \(h = \frac{n C_{in} - C_0 (g+k)}{g+k} \) and \(c = (g+k) \), while \(C \), \(t \) and \(e \) are obviously carbon, time and the Napier number (exponentiation). This is a saturation function levelling off at \(a \), the equilibrium SOC level. The rate at which the function levels off is fundamentally governed by \(c \), which is the sum of \(g \) and \(k \), the intrinsic rates of \(C \) gain and loss respectively. Over time, the exponential term tends to zero, and \(C \) settles at \(a \).

Any time series can be fitted with this model, which is particularly intuitive in a situation where soil is initially well below its equilibrium but then builds up over time to reach equilibrium. The nonlinear model is easy to fit to times series of SOC, where \(C \) (SOC) is the dependent variable \(x \) and time is the independent variable \(y \). For example, in R using the function `nls` in package `nlme` one can fit the model as follows (Ritz & Streibig 2008 see also Supplementary File R_Script)

```r
library(nlme)

ModelFit1<- nls(Cdata ~ a-h*exp(-c*time),data = datamodel, start = list(a = 25, h = 0.08, c = 2))
```

In this line of code, we assume that data are stored in the data framework “datamodel”, and the list of initial parameter values is based on a preliminary estimate, which is usually based on a quick inspection of the data (basically, in this case by plotting \(C \) against time).

The interesting aspect is that one can easily expand the model to include factors and variables that might modify model parameters. For example, \(g \) and \(k \) might depend on the fungal to bacterial ratio or one may introduce the effect of particular treatments on the parameters (e.g., management types such as extensive vs intensive).
Assume two time series from the same area: in time series “In”, soil was under intensive management, while in time series “Ex” soil was under extensive management. Data are thus grouped by the factor “management” (Man), which consists of two levels (intensive vs extensive). We can then test the hypothesis that management affects gain and loss rates by fitting a nonlinear model as follows:

$$ModelFit_{Groups}<- nls(Cdata ~ a[Man]-(h[Man]) \exp(-c[Man]*time), data = datamodel, start = list(a = c(25,35) \ h = c(0.08,0.09), b = 2))$$

Where a[Man] and h[Man] means that model parameters may differ between the two levels of the factor Man, that is between In and Ex. In the initial parameter values, for example, we guess that In might be around 25 t C ha⁻¹ while Ex around 35 t C ha⁻¹.

Random effects due to location or plot can be introduced in this statistical modelling framework by using the facilities provided in functions such as nlme (Pinheiro & Bates 2000).

C) Examples of continuous determinants of gain and loss rates

The relative abundance of fungi and bacteria has for a long time been considered a key soil food web property that responds to soil management (e.g., intensive vs. extensive) and correlates with processes of C and N cycling (Hendrix et al. 1986; de Vries et al. 2006; Kallenbach et al. 2016). Shifts in the relative abundance of fungi and bacteria could be introduced in the model to regulate rates of loss and gain, the key point being that soil with a high fungal to bacterial ratio are usually characterised by high SOC (Hendrix et al. 1986; de Vries et al. 2006, 2013), even when these soils might have relatively high soil respiration rates (e.g., de Vries et al. 2013). It is also possible that higher SOC determines higher biomasses of fungi and bacteria and only experiment can resolve the direction of causality. For simplicity, let’s assume that the fungal to bacterial ratio regulates rates of SOC losses. More specifically, some literature suggests that a lower fungal to bacterial ratio is correlated to an increase of SOC loss rates (Malik et al. 2016), which could in the first instance be modelled linearly as follows

$$\frac{dC_{loss}}{dt} = \frac{b}{f} k' C_{soil}$$
being the bacterial to fungal ratio. This equation suggests that the higher the fungal to bacterial ratio the lower the C loss. The fungal to bacterial ratio could, however, also increase SOC gains, as shown below. In any case, an important point to note in the context of the relationship between fungal to bacterial ratio, SOC, and soil respiration, is that in our model high equilibrium SOC can be maintained at a high rate of SOC turnover as long as high rates of SOC losses are compensated by high rates of SOC gains (see figure 5 in main text). Such a system can maintain high SOC at high turnover rates: a fast turnover of SOC does not necessarily imply net SOC losses via increased respiration or leaching. A possible mechanism through which losses can be compensated by gains due to increased fungi is the formation of soil structure. In fact, increased fungal biomass usually correlates with improved soil structure (Tisdall & Oades 1982; Six et al. 2004; Rillig & Mummey 2006).

Consequently, a simple way to introduce SOC gain via soil structure could be

\[
\frac{dC_{gain}}{dt} = n \ C_{in} - \frac{g_d}{d} \ C_{soil}
\]

\(d\) being an index of soil structure such as mean weight diameter or the exponent of the power laws that describe the relationship between soil particles size and numbers (e.g., Caruso et al. 2011).

More generally, we can write

\[
\frac{dC_{loss}}{dt} = X \left(\frac{f}{b} \right) C_{soil}
\]

\[
\frac{dC_{gain}}{dt} = n \ C_{in} - Y (d) \ C_{soil}
\]

were \(X\) and \(Y\) are respectively functions of \(f/b\) (fungal to bacterial ratio) and \(d\) (soil structure). There are numerous potential shapes for the generic functions \(X\) and \(Y\), which will need to be investigated in the future and will depend on the mechanistic resolution that future experimental studies may allow to achieve. Still, the mathematical formalism that introduces these general functions helps with conceptualising existing information to develop a new modelling framework. In the future, this framework will have to accommodate the actual, multivariate complexity known to regulate SOC dynamics. The general point is that the loss and gain
equations can have functional shapes of any complexity to account for complex patterns of temporal variation in SOC.

References

