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Abstract This study investigates the spatial dis-
tribution of organic carbon (C) in free stable mic-
roaggregates (20–250 �m; not encapsulated
within macroaggregates) from one Inceptisol and
two Oxisols in relation to current theories of the
mechanisms of their formation. Two-dimensional
micro- and nano-scale observations using syn-
chrotron-based Fourier-transform infrared
(FTIR) and near-edge X-ray absorption Wne
structure (NEXAFS) spectroscopy yielded maps
of the distribution of C amounts and chemical
forms. Carbon deposits were unevenly distributed
within microaggregates and did not show any dis-
cernable gradients between interior and exterior
of aggregates. Rather, C deposits appeared to be
patchy within the microaggregates. In contrast to
the random location of C, there were micron-
scale patterns in the spatial distribution of ali-
phatic C–H (2922 cm¡1), aromatic C=C and N–H
(1589 cm¡1) and polysaccharide C–O (1035 cm¡1).
Aliphatic C forms and the ratio of aliphatic C/
aromatic C were positively correlated (r2 of
0.66–0.75 and 0.27–0.59, respectively) to the
amount of O–H on kaolinite surfaces

(3695 cm¡1), pointing at a strong role for organo-
mineral interactions in C stabilization within
microaggregates and at a possible role for mole-
cules containing aliphatic C-H groups in such
interactions. This empirical relationship was sup-
ported by nanometer-scale observations using
NEXAFS which showed that the organic matter in
coatings on mineral surfaces had more aliphatic
and carboxylic C with spectral characteristics
resembling microbial metabolites than the organic
matter of the entire microaggregate. Our observa-
tions thus support models of C stabilization in
which the initially dominant process is adsorption
of organics on mineral surfaces rather than occlu-
sion of organic debris by adhering clay particles.

Keywords Aliphatic C, Aromatic C · FTIR · 
Minerals · NEXAFS · Free microaggregates

Introduction

Soil organic matter (SOM) constitutes the largest
pool of organic C on the Earth’s surface (IPCC
2001; Blanco-Canqui and Lal 2004) and exerts
strong control on greenhouse gas emissions (Schi-
mel et al. 2001; Lal 2003), C sequestration (Lal
2004), soil fertility and plant productivity, and
Wltration of water during its passage through soil
(Stevenson and Cole 1999). Most organic matter
enters the soil as readily recognizable plant litter
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and is mineralized within months (Christensen
2001). A small portion, however, may be stabi-
lized through interactions with mineral surfaces
for periods up to thousands of years (Schloesing
1902; Golchin et al. 1994a; Sollins et al. 1996;
Trumbore 2000; Six et al. 2004). Stabilization of
SOM is therefore of great importance for biogeo-
chemical cycles on an ecosystem and global scale,
yet these stabilization mechanisms are still poorly
understood.

Microaggregates are considered to be the
repository of the most stable C pool in soils
(Edwards and Bremner 1967; Tisdall and Oades
1982; Six et al. 2000) and the largest proportion of
C input into stable soil organic matter pools was
found in microaggregates (Kong et al. 2005). Two
major mechanisms have been postulated to
explain formation of microaggregates and the
consequent long-term stabilization of SOM. Fol-
lowing upon earlier Wndings (Schloesing 1902;
Sideri 1936), Emerson (1959) and Edwards and
Bremner (1967) proposed that organo-mineral
microaggregates (20–250 �m) form by interac-
tions of polyvalent metals and organic ligands
with mineral surfaces. The nature and binding
strength of organo-mineral interactions depend
on the type (Kaiser et al. 2002) and surface area
of the mineral particles (Guggenberger and Kai-
ser 2003). Others argue for a mechanism in which
microaggregates form when organic debris
become surrounded by Wne mineral particles (Tis-
dall and Oades 1982; Six et al. 1998; Cambardella
and Elliot 1993; Golchin et al. 1994b; Jastrow
1996). These two processes of microaggregate
formation, organo-mineral interactions and occlu-
sion of debris by clay particles, are not mutually
exclusive. But to what extent do they contribute
to C stabilization?

Here we applied synchrotron-based microspec-
troscopy, using x-ray focusing optics (Jacobsen
et al. 2000) coupled with C K-edge signal acquisi-
tion (NEXAFS) and Fourier-transform infrared
(FTIR) spectroscopy (Miller et al. 2002), to map
C contents and forms at a spatial resolution of
0.05–5 �m. The FTIR mapping also shows the
location of organic C forms in relation to mineral
surfaces, thus providing direct evidence for the
relative importance of the two modes of microag-
gregate formation. Using an improved soil

sectioning technique, we were able to investigate
entire microaggregates for the Wrst time, signiW-
cantly expanding our earlier NEXAFS experi-
ments (Kinyangi et al. 2006) and enabling use of
FTIR in transmission mode at high spatial resolu-
tion. Kinyangi et al. (2006) found that organic C
forms close to the aggregate surface diVered from
those in the aggregate interior, as did organic C
forms on mineral surfaces versus those in pores.
Whether such diVerences aVect the distribution of
C forms across entire microaggregates was not
clear. The location of the organic matter within
the aggregate and its chemical form can then be
used to make inferences about the mechanism of
C stabilization in microaggregates. The objective
of this study was to map the spatial distribution of
C and its chemical forms within microaggregates.
The results are discussed in relation to theories
supporting the formation of microaggregates by
organo-mineral interactions vs. occlusion of
organic debris by clay particles.

Materials and methods

Site information

Soils were obtained from McGowen forest in
Tompkins County, Upstate New York
(42°26�44�� N and 76°27�2�� W) in the USA;
Nandi forest (00°04�30�� N and 34°58�34�� E) in
Western Kenya; and Lago Grande forest south of
Manaus (03°13�40�� S and 60°16�04�� W) in Brazil.
McGowan is a virtually undisturbed northern
mixed mesophytic forest (Gauch and Stone 1979;
Doyle and Doyle 1988). The upper canopy is
dominated by Liriodendron tulipifera (L.), Mag-
nolia acuminata (L.), Pinus strobus (L.), Quercus
rubra (L.), Carya ovata (K. Koch), Carya glabra
(Sweet), Fraxinus americana (L.) and Fraxinus
nigra (Marsh.); while the lower story is composed
of Acer rubrum (L.), Acer saccharum (Marsh.)
and Carpinus caroliniana (Walter) (E. Stone
unpublished data). Elevation is about 280 m a.s.l.,
with a mean annual temperature of 8.0°C and
precipitation of 924 mm. Soils, formed in strati-
Wed silty deposits of glacial lake origins, are mod-
erately well drained, sandy loam in texture, and
are classiWed as Dystrochrepts (USDA 1999)
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(Table 1). The Nandi highland forest in western
Kenya is the eastern-most remnant of the once
contiguous Guineo-Congolian rainforest and is
among the last remnants of pristine tropical rain-
forest in this intensely cultivated region. Nandi
forest is composed of Guineo-Congolian species
including Aningeria altissima (A. Chev.), Milicia
excelsa (Welw., C.C. Berg), Antiaris toxicaria
(Lesch) and Chrysophyllum albidum (G. Don).
Montane-forest species are also present including
Olea capensis (L.) and Croton megalocarpus
(Hutchinson). The Nandi site is located 2000 m
a.s.l. with a mean annual temperature of 19.0°C
and precipitation of 2000 mm. Soils are well-
drained, extremely deep dark reddish brown soils
with friable clay and thick organic-rich topsoils
developed principally from biotite-gneiss parent
material. The soils are classiWed as Hapludoxes
(USDA 1999). The Lago Grande forest site is at
about 45 m a.s.l., with a mean annual precipita-
tion of 2500 mm and temperature of 26.6°C. Soils,
derived from Tertiary sediments, are well-
drained, yellow in color and clayey textured. They
are classiWed as Hapludoxes (USDA 1999). The
forest is large stature with high species diversity
and a sparse herbaceous cover. The most frequent
species are Chrysophyllum amazonicum (T.D.
Penn.), Chrysophyllum sanguinolentum (Pierre,
Baehni), Crepidospermum rhoifolium (Benth.,
Triana & Panch), Anacardium parvifolium
(Ducke), Ambelania acida (Aubl.), Dinizia
excelsa (Ducke), Sloanea sinemariensis (Aublet),
Bocageopsis multiXora (Mart., R.E. Fr.) and Bert-
holletia excelsa (Humb. & Bonpl) (de Oliveira
and Mori 1999). The Lago Grande forest is also
particularly rich in epiphytes such as Philoden-
dron spp, Heteropsis spp and Anthurium spp and
stranglers of Ficus spp.

Soil sampling and analyses

Samples for NEXAFS were collected at McGowen
forest in March 2005. After removing the litter
layer, we froze the topsoil with liquid nitrogen,
then carved 10 cm £ 10 cm intact blocks which
were stored at 4°C overnight. NEXAFS samples
from the Nandi and Lago Grande sites, and
samples from the McGowen site used for other
analyses, were collected by taking six to nine
200 cm3 cores from the upper 10 cm of the soil,
which were later composited into one sample per
plot. The composite samples were then sieved to
2 mm and homogenized.

Soil texture was determined using the pipette
method with 20 g dry soil dispersed in 1000 ml
10% Calgon solution, separated by sedimentation
for diVerent periods of time, dried, and weighed
(Gee and Orr 2002). The pH in H2O and in KCl
was determined in a 1:2.5 soil:water (w/v) suspen-
sion. Aliquots were Wnely ground with a Mixer
Mill (MM301, Retsch, Germany) and organic C
and total N contents determined using a Europa
ANCA GSL analyzer (PDZEuropa, Crewe,
England). The potential CEC was measured by
twice saturating the exchange sites of 1 g soil with
40 ml 1 M ammonium acetate at pH 7, then dis-
placing the adsorbed ammonium ions with 2 M
KCl. The ammonium was measured with a seg-
mented Xow analyzer (Technicon Auto Analyzer,
Chauncey, CT, USA).

Sample preparation for NEXAFS and FTIR 
spectroscopy

Intact microaggregates (20–250 �m) were picked
from the soil samples (after slight thawing of the
McGowan forest sample cores at room tempera-

Table 1 Selected climate and soil properties of the studied sites

a Mean annual precipitation
b Potential cation exchange capacity

Site Soil type Country MAPa 

(mm)
Sand 
(%)

Silt
(%) 

Clay
(%)

pH C (mg g¡1) N (mg g¡1) C/N CECb

cmol kg¡1 soil
H2O KCl

McGowan Dystrochrept USA 924 17.0 70.0 13.0 6.1 5.2 34.0 2.6 13.1 11.5
Nandi Hapludox Kenya 2000 65.0 22.0 13.0 6.5 5.9 95.1 9.5 10.1 12.0
Lago Grande Hapludox Brazil 2500 69.0 4.0 27.0 4.2 3.5 17.5 1.3 14.0 59.2
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ture) using super tweezers (N5, Dumont, Montig-
nez, Switzerland) under a 30£ light microscope.
Only those microaggregates that were easily sepa-
rated from the soil without breakage and main-
tained visibly round edges (termed here “free
stable microaggregates”) were selected. After 40–
60 microaggregates were obtained from each soil,
we selected 5–10 typical examples for spectro-
scopic analyses. The selected microaggregates
were sprinkled on a Whatman GF/A Wlter,
mounted onto a sieve and Wxed to a chimney fun-
nel that transferred warm mist from a humidiWer
Wlled with ultrapure water. After eighteen hours
of continuous misting, the microaggregates were
considered to be water saturated. Excess droplets
on the Wlter were drained after which microaggre-
gates were selected and frozen at ¡20°C and
directly sectioned without embedding in liquid
sulfur (Lehmann et al. 2005; Kinyangi et al. 2006).
Thin sections (300–600 nm) were cut at ¡55°C
using an ultramicrotome with a diamond knife
(MS9859 Ultra 45°C, Diatome Ltd., Biel, Switzer-
land) at a cutting speed of 0.3»1.2 mm sec¡1

(angle of 6o). Sections were transferred to Cu
grids (carbon free, 200 mesh, silicon monoxide
No. 53002, Ladd Research, Williston, VT) and
air-dried.

STXM and C (1s) NEXAFS data collection 
and analysis

Coupled with STXM, NEXAFS images were
recorded at diVerent energies below and above
the C absorption K edge (284.3 eV) at the X1-A
end station of the National Synchrotron Light
Source (NSLS) at Brookhaven National Labora-
tory. The synchrotron beam delivers a Xux of
»107 photons s¡1, with an energy bandwidth of
about 0.1 eV for soft X-rays. Due to diYculties in
maintaining the sample at the focal point for sub-
micrometer-sized areas, direct recording of
NEXAFS data by simple scanning of the incident
radiation energy at a Wxed sample position was
not possible. Therefore, a Fresnel zone-plate
focus was used and stack images were recorded
(Rothe et al. 2000). Scanning was done at incre-
ments of 0.3 eV (dwell time 1 msec) for the
energy range from 280 to282.5 eV, at 0.1 eV up to
292 eV (dwell time 2 msec), and at 0.3 eV up to

310 eV (dwell time 3 msec). Entire aggregates
were scanned at a distance of 500 nm between
individual measurement points (50 nm for areas
within aggregates) with a pixel size of 50 nm. Indi-
vidual images scanned across all energy levels
were stacked (Stack-Analyze 2.6 software, C. Jac-
obsen, SUNY Stony Brook; built on IDL 6.1 soft-
ware, Research Systems Inc., Boulder, CO), then
aligned mathematically (using 290 eV as a refer-
ence) to correct for mechanical shift of the sample
stage out of the focal point (<0.3 pixels).

Carbon amounts were mapped within aggre-
gates by subtracting spectral regions below the C
K-edge at 280.5–282.5 eV from regions above the
C K-edge at 290–292 eV. After deWning a back-
ground correction area (I0) and orthogonalizing
and noise-Wltering the data, principal component
and cluster analyses (PCA_GUI 1.0, Lerotic et al.
2004) were used to identify sample regions with
similar spectra. From 2 to 4 components and 20
clusters were used based on the eigenvalues,
eigenimages, and eigenspectra (Beauchemin et al.
2002; Lerotic et al. 2005). The goal was to select
components due to systematic variations of spec-
tral signals from pixel to pixel and to discard ran-
dom Xuctuations of signal beyond which noise
eVects will occur. A singular value decomposition
(SVD) procedure was used to obtain target maps
and associated target spectra. For comparison,
spectra for entire aggregates were obtained using
Stack-Analyze 2.6 software.

FTIR data collection and analysis

Fourier Transform Infrared (FTIR) analysis was
done at the U10B beamline of the NSLS facility at
Brookhaven National Laboratory. This beamline
is equipped with a Spectra Tech Continuum IR
microscope Wtted with 32£ transmission/reXection
and FTIR step-scan spectrophotometer (Nicolet
Magna 860, Thermo Nicolet Corporation Wiscon-
sin, USA) using a KBr beam splitter and mercury-
cadmium-telluride detector with 500–4000 cm¡1

wave-number range and 1.0 cm¡1 spectral resolu-
tion. Spectral maps of aggregates were recorded
with a 7-�m aperture size and a step size of 6 �m
from 4000 to 650 cm¡1 at spectral intervals of
4 cm¡1. Each spectrum was composed of 256 scans
added before Fourier transformation.
1 3
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Spectral maps were processed using Omnic 7.1
(Thermo Electron Corp., Waltham, MA). After
cropping to a spectral region from 4000 to
800 cm¡1, and normalization and automatic base-
line correction, map proWles were created for
peak heights at 3687, 3620, 2922, 1589, and
1035 cm¡1. The peak position at 3695 cm¡1 corre-
sponds to stretching vibrations of surface O–H
groups of kaolinite for the two studied Oxisols
(Filip et al. 1988; Ledoux and White 1964), at
3620 cm¡1 to illite for the studied Inceptisol
(Sucha et al. 1998), at 2922 cm¡1 to C–H stretching
vibrations in aliphatic biopolymers (Haberhauer
et al. 1998; Baddi et al. 2003), at 1589 cm¡1 to
C = C stretching of aromatic C or N–H deforma-
tions (Filip and Kubát 2003), and at 1035 cm¡1 to
C–O stretching vibrations of polysaccharide C
(Haberhauer et al. 1998; Solomon et al. 2005).
Peaks around 1035 cm¡1, however, can also be
due to Si–O vibrations in some clay minerals and
can only be attributed to C–O when found in
conjunction with low intensities at wave numbers
above 3600 cm¡1 (see below).

Statistical analyses

Linear regressions between peak heights
obtained by FTIR spectroscopy were done using
Statistica 5.1 (StatSoft, Hamburg, Germany).

Results and discussion

Distribution of carbon in free stable microaggre-
gates

Total organic C was found to be unevenly distrib-
uted within microaggregates obtained from the
three sites (Fig. 1), with no consistent variation
from microaggregate surfaces to interiors.
Distinct C deposits were observed close to the
surface as well as in the interior of microaggre-
gates. These organic C-rich areas located close to
the aggregate surfaces were still separated from
pore space by minerals (McGowen and Lago
Grande forests, Fig. 2) or by occlusion within
small pores that are not accessible to microorgan-
isms (Nandi forest, Fig. 2). Therefore, very little
organic matter appeared to be located on open

surfaces of the studied microaggregates. In con-
trast, Amelung et al. (2002), using sputtering with
an Ar-ion gun followed by XPS analysis to study
microaggregates slightly larger than 53 �m
obtained from a Mollisol, showed that most of the
organic C was located on the microaggregate sur-
faces. Also Skjemstad et al. (1993) concluded
from UV oxidation of similarly sized microaggre-
gates that only 23 to 36 % of the C was contained
in physically protected areas, presumably within
the aggregates. These techniques may have cap-
tured a portion of interior regions of microaggre-
gates which also in our images were shown to be
C rich. The lack of an organic core in our images
contrasts with the theory that microaggregates
may form around organic debris (Tisdall and
Oades 1982; Six et al. 1998; Cambardella and
Elliot 1993; Golchin et al. 1994b; Jastrow 1996).

Distribution of carbon forms in free stable micro-
aggregates

While the distribution of total C appeared to be
random, certain C forms (but not all) showed
clearly discernable spatial patterns. For the two
Oxisols, aliphatic C appeared to have a spatial
distribution directly correlated with that of kaoli-
nite O–H (at 3695 cm¡1; Fig. 4), whereas aromatic
C=C bonds and N–H deformations (1589 cm¡1)
showed an inverse correlation with kaolinite O–H.
These visual observations were conWrmed by
correlation analyses (Fig. 5). The FTIR-based
maps of organic C forms (Fig. 3), also indicated
that the patterns of polysaccharide C (C–O bonds
at 1035 cm¡1; Fig. 4), aromatic C (C=C bonds and
N–H deformations assigned to a peak position at
1589 cm¡1; Fig. 4) and aliphatic C at 2922 cm¡1

(C–H stretching vibrations; Fig. 4) were diVerent
and spatially unrelated.

For the McGowen site, the O-H stretching
vibrations at 3620 cm¡1 (Fig. 4) most likely
originated from illites (Sucha et al. 1998) and
correlated well with both aliphatic (r2 = 0.51) and
aromatic C (r2 = 0.65; N = 34). Correlations with
carbohydrate C–O were signiWcant (r2 = 0.42) but
ambiguous for this soil as the illitic Si-O signal
most likely overlapped with the C–O stretching
vibrations at 1035 cm¡1. It should be kept in
mind, however, that the nature of the clay-bound
1 3
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organic matter may vary with clay surface chemis-
try (Greenland 1965; Jardine et al. 1989; Golchin
et al. 1995; Lichtfouse et al. 1998; Kahle et al.
2003; Zimmerman et al. 2004). We were not suc-
cessful in exploring other clay minerals or amor-
phous oxides that may have a very strong control
on C stabilization through surface interactions
(Mikutta et al. 2006). This should be done in
future experiments capitalizing on spectral areas
with wave numbers below 800 cm¡1.

Aliphatic C and non-polar interactions have
been previously recognized as important in org-
ano-mineral interactions and microaggregation
(Wershaw and Pinckney 1980; Jardine et al. 1989;
Wershaw et al. 1996; Kleber et al. this volume).
Using FTIR Skjemstad et al. (1993) found
more aliphatic C in silt-sized aggregate fractions
(2–20 �m) than in smaller structural units
(<2 �m), suggesting a role for aliphatic compounds

in microaggregate formation. Moreover, aliphatic
C has been shown to be more abundant in clay-size
than in coarser particles as determined by nuclear
magnetic resonance (NMR) spectroscopy (Oades
1988), spectrophotometry of humic-acid fractions
(Anderson et al. 1981), and fatty-acid extracts fol-
lowed by gas chromatography (Jandl et al. 2004).

The empirical correlation between C forms and
surface hydroxyls of kaolinite determined by
FTIR (Fig. 5) was further examined on a nanome-
ter scale by directly identifying the chemical
forms of the organic matter that coated mineral
surfaces using NEXAFS maps (Fig. 6). These
maps showed that the clay-bound SOM was
richer in aliphatic C (287.2 eV) and carboxylic C
(288.6 eV) than the SOM averaged over the
entire aggregate cross-section (Fig. 6). Similarly,
Kinyangi et al. (2006) using C K-edge NEXAFS
found organic coatings in microaggregates to be

Fig. 1 Carbon distribution in free stable microaggregates from three soils using C (1s) NEXAFS (0.5-�m resolution); white
arrows point at regions of high C content shown as white areas

McGowen Forest

20 µm

pore space

pore 
space

pore space

aggregate
aggregate

aggregate

Nandi Forest Lago Grande Forest

Fig. 2 Carbon distribution near microaggregate surfaces
using C (1s) NEXAFS (0.05-�m resolution); white arrows
point at regions of high C content shown as white areas;

black arrows point at dark areas of high absorbance con-
sisting of clay coatings

McGowen Forest Lago Grande Forest

5 µm

5 µm

5 µm

pore space

aggregate

pore space
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pore space
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1 3



Biogeochemistry 
richer in carboxylic C, and poorer in aromatic C,
than organic debris in pores. Such associations
between carboxylic-C groups and clay surfaces
conWrm several earlier reports (Emerson 1955;
Edwards and Bremner 1967; Oades 1988).

The chemical signature of these coatings,
mainly aliphatic and carboxylic with minor
amounts of aromatic C, resemble NEXAFS spec-
tra of cells in bacterial bioWlms (Lawrence et al.
2003) and of isolated bacteria and fungi (Liang
et al. 2006) suggesting that the coatings could be
mainly microbial structural metabolites or debris.
The signiWcant spatial relationship between
clay particles and microbially derived coatings,
but not plant debris, points at the importance of

organo-mineral interactions for the formation of
microaggregates.

The precise nature of the organic coatings
remains elusive from our analysis and requires
targeted analyses using O and N K-edge
NEXAFS. The conspicuous absence of a relation-
ship between kaolinite O–H and polysaccharide
C–O (at 1035 cm¡1) using FTIR (Figs. 3 and 4) is
in apparent contrast to conclusions drawn from a
variety of experiments, some of which date back
well into the last century, in which microbial poly-
saccharides are seen to intimately associate with
clays (Martin 1945; Geoghegan and Brian 1948;
Greenland et al. 1961; Martin 1971; Tisdall and
Oades 1988; Foster 1981, 1988; Tiessen and

Fig. 3 Distribution of polysaccharide C (1035 cm¡1), aro-
matic C (1589 cm¡1), aliphatic C (2922 cm¡1) and kaolinite
O–H (3687 cm¡1) in aggregates from Nandi (Kenya), Lago
Grande (Brazil), and McGowen (USA) forests using FTIR

spectroscopy (5-�m resolution); the color scale is a relative
scale for each peak height and does not allow quantitative
comparisons between peaks
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Fig. 4 Representative FTIR spectra of locations within
free microaggregates with large (A), medium (B), and
small (C) amounts of kaolinite O–H of clay minerals

(indicated by the peak intensity at 3687 cm¡1); locations of
spectra are identiWed with boxes in Fig. 3 
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Fig. 5 Relationship between the amount of clay
(absorbance at 3695 cm¡1) and either aliphatic C (absor-
bance at 2922 cm¡1) or the ratio of aliphatic (absorbance at
2922 cm¡1) to aromatic C (absorbance at 1589 cm¡1)

(N = 185 and 55 for Nandi and Lago Grande forests,
respectively); the positive relationship between clay and
the ratio of aliphatic to aromatic C argues against artifacts
due to diVerent densities within the aggregate
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Stewart 1988; Guggenberger et al. 1994; Solomon
et al. 2002). However, it can not be excluded that
the C–O stretching vibrations determined by
FTIR are either a minor component of those
organic compounds that are interacting with min-
eral surfaces or are masked by interferences from
Si–O of minerals at 1035 cm¡1. Other explana-
tions for the absence of a spatial association
between kaolinite and polysaccharides may
include that polysaccharides (i) do not have a per-
sistent (as proposed by Tisdall and Oades 1982)
but rather a transient role in C stabilization in
microaggregates, (ii) are correlated with stabiliza-
tion but do not cause stabilization and therefore
increase only as a result of C stabilization, or (iii)
constitute precursors of substances that provide
long-term binding and stabilization.

Implications for organic matter stabilization
in microaggregates

Our high-resolution observations of C forms in
free stable microaggregates by synchrotron-based

spectroscopy warrant a fresh look at the pub-
lished theories of the nature of this stable C pool
and how organic matter is stabilized in microag-
gregates. Particulate organic debris were found in
stable microaggregates (Six et al. 2000, 2002) and
microbial debris can be encrusted with minerals
(Tisdall and Oades 1982). Such observations
would support the view of physical occlusion as
an important mechanism of stabilization and of
location inside a microaggregate as the key to
ensure organic matter stability.

Our results from C (1s) NEXAFS maps rather
suggest that the genesis of a microaggregate
begins with the formation of bonds between min-
erals and organic matter with minimal protection
by aggregation at its inception (stage 2 in Fig. 7).
This proposal expands earlier hypotheses by
emphasizing the importance of organo-mineral
interaction as the initiation of stabilization and
key to stable C, whereas models proposed by
Emerson (1959), Tisdall and Oades (1982), Beare
et al. (1994), and Six et al. (1998 2000) start this
process with an encapsulation of organic matter

Fig. 6 Carbon distribution (maps) and forms (graphs) on
mineral surfaces within free microaggregates using C (1s)
NEXAFS (0.05 �m resolution); white areas in images indi-
cate regions that are best described with the spectrum

labeled “surface coating”; the spectrum for the entire
aggregate is shown for comparison and energy levels at
285.2 eV and 288.6 eV are indicated by vertical dashed
lines
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between minerals concurrent with its attachment
to mineral surfaces.

The present study also emphasizes the impor-
tance of microbial metabolites for the formation
of stable microaggregates rather than plant debris
as nuclei for microaggregate formation (Tiessen
and Stewart 1988; Oades and Waters 1991; Beare
et al. 1994). Such a view agrees with observations
of the intimate spatial association between
microbial metabolites and clays using electron
microscopy (Ladd et al. 1993) and their strong
adsorption to clay surfaces (Chenu and Stotzky
2002; Mikutta et al. 2006). The micro-aggregation
as a result of organo-mineral interactions then
helps protect the organic matter coatings them-
selves as well as any intra-aggregate organic
debris through physical occlusion in pores (Mayer
and Xing 2001; Kaiser and Guggenberger 2003;
Mayer et al. 2004; Mikutta et al. 2004;
Kinyangi et al. 2006) (Fig. 7). A causal relation-
ship between organo-mineral interactions and
physical occlusion may be important when devel-
oping management systems designed to improve
C stabilization. Greater production of microbial
metabolites would then be expected to promote
not just aggregation, as has been known for some
time (Waksman and Martin 1939), but also C sta-
bilization in microaggregates,

The model outlined here is also in accordance
with observations that microaggregates form via
diVerent processes and are more stable than mac-
roaggregates (Tisdall and Oades 1982; Elliott and
Coleman 1988; Six et al. 2000). It would also
explain why large macroaggregates (2–9 mm)
show gradients of increasing C content from sur-
face to interior (Santos et al. 1997; Horn and
Smucker 2005; Park and Smucker 2005) whereas

the microaggregates studied here did not (Fig. 1).
This is because in this concept stabilization in
microaggregates is initally conferred by strong
organo-mineral interactions (Chenu and Stotzky
2002; Mikutta et al. 2006) and not primarily by
physical location such as has been proposed for
macroaggregates.

To some extent this search for stabilization
mechanisms and attributes of stable SOM in mic-
roaggregates is a question of scale. Organo-min-
eral interactions manifest themselves primarily as
organic surface coatings on clay particles, which
can be considered an aggregate when sandwiched
between two clay particles (Fig. 7). From that per-
spective, one can ask whether the interaction with
mineral surfaces or the protection by its location
between minerals confers more stability to the
organic matter. A spatial distinction of organic
matter forms becomes important to distinguish
organic coatings that bear very diVerent chemical
characteristics than organic debris in pores (Kiny-
angi et al. 2006) (Table 1).

Conclusions

Two-dimensional micro- and nano-scale observa-
tions of the C distribution in soil microaggregates
have provided new insight into the mechanisms of
microaggregate formation and thus stabilization
of organic C. They suggest that, at least in the
soils studied here, microaggregate formation is
initiated mainly by accumulation of organics on
clay particle surfaces, not by occlusion of organic
debris by clay particles. Our results are the Wrst
imaging of two-dimensional in-situ C maps show-
ing nanometer-scale distributions of organic C in

Fig. 7 Conceptual model of the formation of free stable microaggregates by Wrst the development of an organic coating on
a clay minerals and then the physical occlusion of the organic coating by a second mineral

1. 2.                          3.                                     4.

clay mineral

organic matter
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entire microaggregates <250 �m. In contrast to
published results for macroaggregates, the micro-
aggregates studied here did not show a gradient
of C concentrations between exterior and interior
regions, a gradient that would be expected if
organic debris formed a core in the microaggre-
gates. On the contrary, organic C was unevenly
distributed within microaggregates with distinct
“hotspots” of C deposition. Aliphatic and carbox-
ylic C, but not other C forms showed a clear pat-
tern of association with clay mineral surfaces.
Additional studies are warranted to extend these
results to aggregates from soils of a wider range of
mineralogies.

Our results suggest that interactions between
microbial metabolites and mineral surfaces are
important in initiating OM stabilization and that
physical occlusion within microaggregates is a
secondary stabilization process. Future studies
should further exploit C, N and O K-edge
NEXAFS to investigate Wne-scale binding
mechanisms between organic matter and mineral
surfaces.
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