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Abstract. Fire is commonly used to establish and maintain pastures in the Amazon. Fire is also known to induce soil
water repellency but few published data exist for the humid tropics. The objectives of this study were to characterise
the intensity and spatial variability of water repellency on previously burned pasture soils in the Amazon, and its
effect on the nutrient status of the forage grass Brachiaria brizantha (Hochst.) Stapf. Surface soils of pastures and
forests in north-western Mato Grosso, Brazil, were found to exhibit soil water repellency using MED and WDPT
tests. Soil water repellency was found only within 0–0.01 m of the mineral soil surface, with soil below 0.01 m
found to be hydrophilic in all cases.

Spatial variability of repellency was high for both pasture and forest soils. For pasture soils, soil water repellency
was strongest on recently burned pastures, which exhibited some extremely high values (MED >8 M). Repellency
decreased rapidly with time following burning. Increasing soil water repellency was associated with decreasing
N : P ratios of B. brizantha above-ground biomass (r2 = 0.66, P = 0.004). These findings indicate that soil water
repellency and pasture productivity are inversely related. Since pasture abandonment fuels continued deforestation,
disrupting the processes causing pasture degradation may lead to more sustainable land use in the Amazon.

Additional keywords: hydrophobicity, Brachiaria brizantha, burning, N : P, Oxisol, Ultisol.

Introduction
Over 75% of Amazonian deforestation in the past 30 years
has been directed towards the establishment of pastures
(Fearnside 1996). The productivity of Amazonian pastures
declines within 4–8 years of establishment, frequently
resulting in abandonment (Buschbacher et al. 1988; Serrão
and Toledo 1990; Kauffman et al. 1998). The often
indiscriminate use of fire in pasture management contributes
to pasture degradation in the Amazon (Serrão and
Toledo 1990).

Fire is one of the key causative factors of soil water
repellency (e.g. DeBano et al. 1970; Savage et al. 1972;
Doerr et al. 1996; DeBano 2000; Robichaud and Hungerford
2000). Burning accompanies deforestation and is used every
2–3 years during pasture establishment (Kauffman et al.
1998). The burning has the potential to cause the build-up of
a water repellent soil layer. This has been suggested to occur
via the translocation of volatilised water repellent organic
compounds into the soil profile, which condense in cooler
soil layers and coat soil aggregates (DeBano 2000). Soil
water repellency has been observed to persist over months

(Huffman et al. 2001) and years (Shakesby et al. 1993). The
breakdown and re-establishment of soil water repellency as
soil is wetted and dried has not been extensively studied
(Shakesby et al. 2000).

The interrelationship of soil water repellency and pasture
degradation has not caught the attention of land managers.
Long-term degradation of Amazonian pastures occurs due
to deterioration of soil nutrient levels and soil structure
(Fearnside 1979; Serrão and Toledo 1990). In the Amazon,
pasture rehabilitation (plowing, fertilising, liming, and
replanting) costs approximately US$800/ha, whereas the cost
of acquiring new land is roughly US$43/ha for forest land
and US$180/ha for pasture land (Fearnside 2001). Disrupting
the process of pasture degradation could reduce the rate of
deforestation by enabling established pastures to be used for
longer periods of time (Serrão and Toledo 1990).

Although much attention has been focussed on soil
water repellency in temperate soils recently, few studies of
water repellency have been conducted in the humid tropics.
Researchers have reported the occurrence of soil water
repellency in humid regions of Colombia (Jaramillo et al.

© CSIRO 2005 10.1071/SR04097 0004-9573/05/030319



320 Australian Journal of Soil Research M. S. Johnson et al.

2000) and India (Singh and Das 1992). In addition, the
dynamics of soil water repellency over time and its relation
to nutrient cycling are poorly understood.

We investigated soil water repellency on pasture, forest,
and cropped soils in north-western Mato Grosso, Brazil. The
objectives of this research were to (1) identify if soil water
repellency exists in soils of the Amazon, and (2) characterise
the intensity and spatial variability of soil water repellency on
pasture soils of the Amazon in relation to: (i) time following
burning; and (ii) plant nutrient status.

Materials and methods

Site description

Thirteen pasture sites in the municipality of Castanheira, Mato Grosso,
Brazil (10◦52′S, 58◦29′W), were classified by the length of time since
the pasture was last burned, and included pastures on small and large
landholdings. All pastures were established at least 4 years prior to
the study. Three of these sites had been burned within 1 week of
the time of measurement, with time since burning for the remaining
pastures ranging from 1 to 10 years. Two forest sites and 2 agricultural
sites were selected for comparison. Sites for all land uses were on
locations with similar soil characteristics and slopes less than 5%.
Forest and cropped sites were selected based upon proximity to pasture
sites. All sites were located within a 15-km radius. Pasture soil and
forage characteristics for pastures not recently burned are presented
in Table 1.

Soils in the study area are predominantly Ultisols and Oxisols with
an ustic moisture regime. Ultisols sometimes have a water repellent
layer close to or at the soil surface (van Wambeke 1992). Rainfall is
approximately 2 m/year, with a 4-month dry season that extends from
May to August.

Pasture sites were all planted to Brachiaria brizantha (Hochst.)
Stapf, a bunch grass that is the most commonly planted forage grass in
the study region as well as in the tropical Americas (Keller-Grein et al.
1996). Pasture soils in the study region are P-limited, having average
soil P levels of 4 mg/kg (Mehlich-I) at 0–0.05 m depth.

Soil water repellency measurements

The strength of soil water repellency was assessed in situ at the
mineral soil surface using the Molarity of an Ethanol Droplet
(MED) test (Watson and Letey 1970; King 1981; Doerr 1998) after

Table 1. Soil physical properties (0–0.05 m) and pasture characteristics of sites not recently burned

Site Bulk Clay Sand Organic Areal N : P of Time since
densityA (%) (%) matter coverage (%) of above-ground burning

(%) B. briazanthaB B. brizantha (years)

1 1.43 ± 0.19 18.1 66.9 3.31 13.9 ± 3.8 7.8 2
2 1.52 ± 0.07 13.1 83.6 2.66 11.1 ± 1.2 7.0 1
3 1.48 ± 0.11 14.7 81.9 3.59 27.0 ± 6.1 3.0 2
4 1.42 ± 0.09 18.1 76.9 2.66 15.8 ± 2.4 7.0 1
5 1.31 ± 0.02 19.7 75.3 2.58 4.6 ± 1.8 14.0 10
6 1.47 ± 0.07 38.1 51.9 3.59 23.7 ± 1.4 7.0 8
7 1.38 ± 0.14 16.4 78.6 3.5 20.5 ± 4.1 2.3 6
8 1.40 ± 0.06 34.7 55.3 4.48 22.2 ± 2.3 5.1 6
9 1.48 ± 0.09 16.4 70.3 1.68 15.1 ± 1.0 6.2 8

10 1.47 ± 0.18 13.1 83.6 2.51 30.9 ± 0.5 3.7 4

AValue ± 1 s.d. (n = 3). BValue ± 1 s.d. (n = 2).

carefully removing all loose organic material. Solutions of ethanol
and distilled water ranging in concentration from 0 M to 8 M were
prepared in 0.5-M increments. Drops of increasing ethanol molarity
were applied to the mineral soil until the surface tension of the
solution was sufficiently low to permit infiltration within 3 s (Doerr
1998). Measurements were made during the dry season in June
2002 following 6 weeks without rainfall. The strength and spatial
variability of soil water repellency at 2 different spatial scales were
assessed by making 5 measurements within 9 microsites (0.1 by
0.1 m) located every 2 m along a downslope-oriented transect (Doerr
et al. 1998).

The relevant soil physical property determined by the MED test is
the strength or degree of water repellency, which is mainly controlled
by the surface tension of the solid–air interface, γs (Letey et al. 2000).
γs is related to the surface tension of the least concentrated ethanol
solution that is rapidly absorbed into the soil (Letey et al. 2000; Roy and
McGill 2002). Thus, the MED test gives the surface tension of the least
concentrated droplet with a contact angle of less than 90◦ (Letey et al.
2000), referred to here as the critical surface tension (CST) (e.g. Scott
2000; Huffman et al. 2001) with unit mN/m. CST values were computed
from ethanol solution concentrations using the equation given by Roy
and McGill (2000). Statistical analysis among sites was performed
using the arithmetic mean CST value of all measurements made
within a site.

Categories of repellency based on MED values that synthesise scales
chosen by King (1981), Doerr (1998), and Doerr et al. (2000) are used
for qualitative descriptions of soil water repellency status, and are given
in Table 2 along with equivalent CST values.

Whereas the MED test is used to assess the strength of soil water
repellency, the Water Drop Penetration Time (WDPT) test (Letey 1969;
Doerr 1998) is commonly used to determine the persistence of soil
water repellency. WDPT measurements in the field proved impractical
due to long drop penetration times and ants climbing onto droplets.
As such, measurements using the MED test were conducted in the
field, whereas the WDPT tests for comparison were conducted in the
laboratory following the methodology suggested by Doerr (1998). In
order to compare results from these 2 tests, soil adjacent to, but not
affected by the MED test was collected from 7 microsite locations that
exhibited different strengths of soil water repellency as determined by
the in situ MED test. Soil samples for the WDPT test were homogenised
and air-dried at 28◦C for 2 weeks. Since soil water repellency was
observed in situ to occur only at the mineral soil surface, soil for the
WDPT test was collected from the 0–0.01 m depth. A drop of water was
placed on the surface of the homogenised soil and the time to infiltration
was measured. This was repeated 5 times on each homogenised sample
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Table 2. Categories of soil water repellency status adapted from
King (1981), Doerr (1998), and Doerr et al. (2000)

MED range (M)A Water repellency status CST range (mN/m)B

<1.0 Hydrophilic >55.1
1.0–2.0 Hydrophobic 55.1–47.5
2.0–3.5 Strongly hydrophobic 47.5–40.6
>3.5 Extremely hydrophobic <40.6

AMolarity of Ethanol Droplet (MED).
BCritical surface tension (CST).

for locations on the sample not affected by previous drop placement. The
mean MED value for the microsite location was used for comparison
with mean WDPT results.

Soil and plant analyses

A suite of measurements was made on the 10 sites that had not been
recently burned. Soil was sampled at 3 locations on each transect
(0–0.05 m depth) using a sharpened steel cylinder (7.1 cm diam.). Bulk
density was determined for each of the 3 samples, which were then
composited and analysed for physical and chemical parameters using
standard methods. Available soil P and micronutrient contents were
measured using Mehlich-1 extraction, total N by Kjeldahl digestion,
and organic matter by loss on ignition.

All above-ground live plant parts of B. brizantha were removed
from two 1-m2 plots in each pasture, homogenised, dried at 70◦C
for 48 h, weighed, and a subsample was ground. B. brizantha
samples were analysed for macro- and micro-nutrients using standard
methods. Nitrogen was determined by titration against boric acid
following digestion in H2SO4. Phosphorus was determined following
nitric perchloric acid digestion using colourimetry. The diameter
of each grass tuft occurring within each 1-m2 plot was measured
following removal of above-ground biomass as a proxy for net
primary productivity. This allowed the percent ground cover to be
measured objectively, irrespective of grazing pressure. B. brizantha
was approximately 40% cured at the time of sampling. Collecting plant
tissue samples from one species at a consistent physiological stage

Table 3. Simple correlations and significance of relationships between soil water repellency and pasture soil and
forage properties

Values are for the Pearson’s correlation coefficient (r) (first value) and P-values (second value). Number of observations
(n) = 13 for CST v. time since burning; n = 10 for all other comparisons

CSTA N : PB Time since Per cent Clay Sand
burning ground cover fraction fraction

N : P 0.81
0.004**

Time since burning 0.69 0.39
0.010** 0.27

Per cent ground cover −0.61 −0.81 −0.18
0.062* 0.004** 0.61

Clay fraction 0.12 0.13 0.45 0.15
0.73 0.72 0.19 0.69

Sand fraction −0.25 −0.16 −0.45 −0.05 −0.94
0.48 0.66 0.19 0.89 0.000**

Soil organic matter −0.37 −0.31 −0.07 0.37 0.61 −0.49
0.29 0.39 0.84 0.29 0.062* 0.15

∗P < 0.1; ∗∗P < 0.01.
ACritical surface tension determined from the Molarity of Ethanol Droplet Test (MED).
BNitrogen : phosphorus ratio for Brachiaria brizantha above-ground biomass.

reduces much of the variability in plant nutrient status (Chapin and
Van Cleve 1989).

Results and discussion

The correlations between soil water repellency (mN/m,
determined from in-situ MED test), potential predictor
variables, and pasture productivity variables are presented
in Table 3. Potential predictor variables for the pasture
soils in this study include time since burning, soil organic
matter, and soil texture, whereas the N : P ratio in the
above-ground biomass of B. brizantha and the per cent
ground cover occupied by B. brizantha tufts are considered
pasture productivity variables potentially related to soil water
repellency. CST values were found to be normally distributed.
Significant relationships with soil water repellency were
only found for the N : P ratio of B. brizantha, time since
burning, and the percent ground cover. These correlations
are considered in further detail in the following sections.
Soil water repellency was not found to be significantly
related to soil texture nor to soil organic matter in this
study (Table 3).

Soil water repellency and pasture burning

Pasture soils in the study area were found to exhibit a range
of soil water repellency at the soil surface during the dry
season. Soil water repellency was found only within 0–0.01 m
of the mineral soil surface, with soil below 0.01 m found to
be hydrophilic in all cases. Soils of recently burned pastures
exhibited extreme water repellency (Fig. 1), including some
point measurements where repellency exceeded an MED
value of 8 M (CST <28.6 mN/m) (Table 4). It should be
noted that the most intense repellency reported in a review
paper by Doerr et al. (2000) corresponds to a MED value of
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Fig. 1. Soil water repellency on representative pasture transects for varying lengths of time following burning: (a) <1 month, (b) 1 year,
(c) >10 years. Repellency expressed as critical surface tension (CST). Boxes indicate the positions of the 25th and 75th percentiles; the bar
inside the box shows the median value and the whiskers show the 10th and 90th percentiles. Dashed lines indicate qualitative soil water
repellency classes.

Table 4. Soil water repellency as measured in situ (MED) for
pasture, forest (F), and cropped (C) sites

Site Time since Mean MED Max. MED Mean CST
burning (years) (M)A (M) (mN/m)B

1 2 1.1 ± 1.6 6.5 60.1 ± 1.9
2 1 1.4 ± 1.1 3.5 54.9 ± 1.5
3 2 1.4 ± 1.3 4 55.8 ± 1.7
4 1 1.1 ± 1.2 4 58.1 ± 1.7
5 10 0.2 ± 0.8 5.5 68.1 ± 0.8
6 8 1.3 ± 1.2 3.5 56.7 ± 1.7
7 6 2.2 ± 1.2 5.5 48.3 ± 1.3
8 6 0.9 ± 1.0 4.5 58.9 ± 1.5
9 8 0.5 ± 0.7 2.5 64.1 ± 1.4

10 4 1.8 ± 1.8 6 54.3 ± 2.0
11 0 4.3 ± 2.7 >8 42.5 ± 2.2
12 0 2.8 ± 1.6 5.5 44.8 ± 1.8
13 0 2.7 ± 1.8 7 46.5 ± 2.6
F1 – 4.3 ± 1.8 6.5 39.3 ± 1.6
F2 – 6.3 ± 1.6 >8 34.1 ± 2.0
C1 – 0.3 ± 0.6 2 67.6 ± 1.6
C2 – 0.6 ± 0.8 2 63.4 ± 2.0

AMolarity of Ethanol Droplet value ± 1 standard deviation.
BCritical surface tension value ± 1 standard error of mean, computed
from MED as per Roy and McGill (2000).

approximately 7 M. Analysis of variance (ANOVA) between
recently burned pastures and pastures not recently burned
showed that repellency is strongest on the 3 recently burned
pastures (P = 0.002, Fig. 2).

Fire-induced hydrophobicity on pastures may result from
transfer of hydrophobic organic compounds from above-
ground biomass to the soil (DeBano et al. 1970). Once the
hydrophobic material is present, either translocated from
burning biomass or present as organic matter/exudates,
extreme hydrophobicity can result from the heating and
‘fixing’ of these compounds (Savage et al. 1972).

Temperatures in the 200–250◦C range may enhance
soil water repellency (DeBano et al. 1976). Temperatures
just above the soil surface during grass fires have been
found to be in the 200–250◦C range, briefly reaching
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Fig. 2. Soil water repellency v. time since burning. Repellency
expressed as critical surface tension (CST). Error bars represent
standard error of the mean. Data points are labelled by site number
(Tables 1 and 4).

a maximum temperature of about 300◦C (Scotter
1970). However, soil surface temperatures may exhibit
considerable spatial variability due to non-uniform fuel
biomass and environmental conditions (Tothill and Shaw
1968). Variability in the pasture-fire fuel load (e.g. live
B. brizantha and its litter), combined with variations in
fire temperatures could lead to the high spatial variability
of soil water repellency observed for recently burned
pastures (Fig. 1a).

The decreasing hydrophobicity in the pastures with time
after burning may signify that soil water repellency is a
very transient phenomenon. Rainfall can destroy the repellent
layer via leaching (Ritsema et al. 1998), and splash and
rill erosion, which may be severe in fire-induced water
repellent soils (Eynard and Lal 2002), could result in a
spatially variable loss of the repellent layer. In addition, the
mechanical destruction of soil water repellency has been
observed (Doerr et al. 1998; Hallett et al. 2001). On one
of our sites, shortly after assessing the water repellency
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on a recently burned and extremely hydrophobic pasture
(pasture 11, Table 4), the pasture was disked. Two days
following plowing, water repellency was again assessed, and
was found to have been completely eliminated (MED = 0.0
for all microsite locations). This was likely due to the mixing
of water repellent surface soil (0–0.01 m) with non-repellent
soil of the plow layer (0.01–0.25 m).

Brachiaria brizantha and soil water repellency

Total nutrient concentration in plant tissue is a commonly
used index of nutrient status, with the ratio of nitrogen
to phosphorus used as a sensitive indicator of the relative
limitation of plant growth by the 2 elements (Garten 1976;
Chapin and Van Cleve 1989; Koerselman and Meuleman
1996). If either N or P is limiting, growth of B. brizantha
is limited (Logan et al. 2000). A declining N : P ratio may
indicate degradation of systems used to produce high-N
products such as beef and milk. A decreasing N : P ratio
of B. brizantha leaf tissues was associated with increasing
soil water repellency (r2 = 0.66, P = 0.004) (Fig. 3). This
may indicate either that (1) soil hydrophobicity influences
nutrient uptake, or (2) P was selectively retained over N
during and after burns. Water repellency may interfere
with mass transport of mobile nutrients such as nitrate,
while exerting a lesser influence over diffusive transport, the
primary transport mechanism for phosphate. N-limitations
due to pyrodenitrification resulting from repeated burning of
biomass (Sanhueza and Crutzen 1998) are also a concern for
pasture productivity. Retention of P over N in Amazonian
pasture agroecosystems following fires has been observed
(Kauffman et al. 1998).

The areal coverage of B. brizantha was determined
for unburned pastures in relation to soil water repellency
(Fig. 4). Since B. brizantha exhibits a bunching growth
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Fig. 3. Soil water repellency v. N : P of Brachiaria brizantha.
Repellency expressed as critical surface tension (CST). Error bars
represent standard error of the mean. Data points are labelled by site
number (Tables 1 and 4).

habit, only 4.6–30.9% of soil was found to be occupied
by B. brizantha tufts (Table 1), with bare soil occupying
the remaining area. The association between B. brizantha
coverage and soil water repellency (Fig. 4, P = 0.06) may be
due to the increased hydrophobicity-inducing potential of a
pasture with greater biomass, or preferential occupation of
less water repellent soil by B. brizantha. No correlation was
found between areal coverage of B. brizantha and time since
burning (Table 3).

Forest and cropped soils

A brief survey of soil water repellency was conducted in
primary forests and plots containing annual crops (Table 4).
The mineral soil surface in forests had strong or extreme
soil water repellency, while exhibiting high spatial variability
(Fig. 5). Occasional hydrophilic points within generally
hydrophobic microsites were identified (Fig. 5b). ANOVA
indicated that the strength of repellency was greater on forest
soils than on pasture soils (P = 0.006). Soil water repellency
on forest soils is likely due to leaching of hydrophobic organic
acids from decomposing forest litter (Doerr et al. 1998).
Logging, which is estimated to affect 15 000 km2/year in the
Amazon (Nepstad et al. 1994), would likely reduce soil water
repellency on forest soils affected by mechanical disturbance
of the soil surface by equipment or falling trees.

Soils in cropped plots were not water repellent (average
MED = 0.5, Table 4). Cultivation using hoes would likely
redistribute any water repellent soil throughout the upper
0.25 m, diluting its effect.

On the MED test

The 2 most common tests for measuring soil water repellency
are the MED and the WDPT tests (Doerr et al. 2000).
Comparisons between the MED test and other methods for
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Fig. 4. Soil water repellency v. per cent ground cover. Repellency
expressed as critical surface tension (CST). Error bars represent
standard error of the mean. Data points are labelled by site number
(Tables 1 and 4).
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Fig. 5. Forest representative transects. Repellency expressed as critical surface tension (CST). Boxes indicate the
positions of the 25th and 75th percentiles; the bar inside the box shows the median value and the whiskers show
the 10th and 90th percentiles. Dashed lines indicate qualitative soil water repellency classes.

assessing soil water repellency [e.g. WDPT, apparent contact
angle (Letey et al. 1962), intrinsic sorptivity repellency index
(Wallis et al. 1991)] have shown the MED test to produce the
most consistent results when applied over a wide range of
water repellent soils (Scott 2000; Huffman et al. 2001).

Three seconds was used as the critical threshold for
droplet infiltration in this study. The critical time of
infiltration for MED measurements used by researchers
varies from as short as 1–2 s (Scott 2000), to 5 s (Buczko
et al. 2002) or 10 s (Roy and McGill 2000). The original 5-s
threshold was chosen ‘arbitrarily’ (Watson and Letey 1970,
p. 843). The standardised method presented by Doerr (1998),
which uses 3 s, appears the most appropriate. This provides a
time frame that is readily observable without the infiltration
being altered by factors such as decay of hydrophobicity
(Doerr 1998).

It should be noted that ethanol solutions differing by
0.2-M increments have been used by a number of researchers
(e.g. Roy and McGill 2000). However, larger increments
are more convenient for measurements because each
droplet influences approximately 1 cm2 of the soil surface
that cannot be subsequently remeasured. Hence, whereas
smaller increments may imply increased precision, the
spatially variable property of interest is best measured within
a smaller physical area, especially when one considers
that the smaller increments do not necessarily lead to
more meaningful interpretations of soil water repellency
(e.g. Table 2).

Comparisons with WDPT

Seven comparisons between the WDPT and the MED tests
were made (Fig. 6). In general, there was an excellent
correlation between the results of these 2 tests. An outlier
apparent in Fig. 6 relates to soil from a microsite with an
average MED value of 5 M (extremely hydrophobic), which
had an average WDPT of 8 s [slightly water repellent as
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Fig. 6. Comparisons for soil water repellency as assessed by the Water
Drop Penetration Time (WDPT) test and critical surface tension (CST)
as computed from the Molarity of Ethanol Droplet test.

classified by Dekker et al. (2001), hydrophobic as classified
by Buczko et al. (2002)]. This may be an artefact of our
measurements, as the spatial heterogeneity means that soil
collected for the WDPT may have been less repellent than
the soil that was measured with the MED test in the field.
Treating this comparison as an outlier and comparing CST
values with log-transformed WDPT values yielded an r2 of
0.98 (P < 0.001).

Conclusions

Soil water repellency is present on Amazonian pasture and
forest soils of north-western Mato Grosso, Brazil, during
the dry season. The strength of repellency was found to be
greatest on recently burned pasture soils, and was generally
high for forest soils following 6 weeks without rainfall. The
spatial variability of soil water repellency was found to be
high on both pasture and forest soils. The rapid decrease
in repellency on pastures following burning may be due
to a spatial pattern of leaching of hydrophobic compounds
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coincident with the area between grass tufts, or to erosion of
the water repellent layer.

Increasing soil water repellency was found to be
associated with a decreasing N : P ratio in above-ground
B. brizantha tissue, indicating that hydrophobicity may
affect biogeochemical cycling of nutrients in pasture
agroecosystems. No relationships were found between soil
water repellency and the texture or organic matter content of
the pasture soils.

High MED values immediately following pasture fires
may indicate a possible role of water repellency in pasture
degradation. Repellency appears to rapidly dissipate over
time following burning of pastures. Disking was found to
eliminate soil water repellency on pasture soils.

It remains to be determined if the substances causing soil
water repellency in pastures are remnants from the former
forest cover on those sites. Further research is needed to
determine if soil water repellency is a significant factor in
pasture degradation in the Amazon.
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