
Soil & Tillage Research 165 (2017) 190–197
Aggregate size distribution in a biochar-amended tropical Ultisol under
conventional hand-hoe tillage

Bernard Fungoa,b,c,*, Johannes Lehmannd, Karsten Kalbitzb,f, Margaret Thion�goa,
Irene Okeyoa, Moses Tenywae, Henry Neufeldta

aCGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), World Agroforestry Center (ICRAF), P. O. Box 30667, UN Avenue-Gigiri,
Nairobi, Kenya
b Institute for Biodiversity and Ecosystem Dynamics (IBED), Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands
cNational Agricultural Research Organization (NARO), P. O. Box 1752, Kampala, Uganda
d Soil and Crop Sciences, Cornell University, Bradfield Hall, Ithaca, NY 14853, USA
eCollege of Agricultural and Environmental Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
f Soil Resources and Land Use, Institute of Soil Science and Site Ecology, Dresden University of Technology, Pienner Strasse 19, 01737 Tharandt, Germany

A R T I C L E I N F O

Article history:
Received 1 February 2016
Received in revised form 10 July 2016
Accepted 14 August 2016
Available online xxx

Keywords:
Biochar
Soil aggregation
Soil organic carbon
Soil respiration
Ultisol
Hand-hoe tillage

A B S T R A C T

Biochar (or pyrogenic organic matter) is increasingly proposed as a soil amendment for improving
fertility, carbon sequestration and reduction of greenhouse gas emissions. However, little is known about
its effects on aggregation, an important indicator of soil quality and functioning. The aim of this study was
to assess the effect of Eucalyptus wood biochar (B, pyrolyzed at 550 �C, at 0 or 2.5 t ha�1), green manure (T,
from Tithonia diversifolia at 0, 2.5 or 5.0 t ha�1) and mineral nitrogen (U, urea, at 0, or 120 kg N ha�1) on soil
respiration, aggregate size distribution and SOC in these aggregate size fractions in a 2-year field
experiment on a low-fertility Ultisol in western Kenya under conventional hand-hoe tillage. Air-dry 2-
mm sieved soils were divided into four fractions by wet sieving: Large Macro-aggregates (LM;
>1000 mm); Small Macro-aggregates (SM, 250–1000 mm); Micro-aggregates (M, 250–53 mm) and
Silt + Clay (S + C, < 53 mm). We found that biochar alone did not affect a mean weight diameter (MWD)
but combined application with either T. diversifolia (BT) or urea (BU) increased MWD by 34 � 5.2 mm (8%)
and 55 � 5.4 mm (13%), respectively, compared to the control (P = 0.023; n = 36). The B + T + U combination
increased the proportion of the LM and SM by 7.0 � 0.8%, but reduced the S + C fraction by 5.2 � 0.23%. SOC
was 30%, 25% and 23% in S + C, M and LM/SM fractions, and increased by 9.6 � 1.0, 5.7 � 0.8, 6.3 � 1.1 and
4.2 � 0.9 g kg�1 for LM, SM, M and S + C, respectively. MWD was not related to either soil respiration or soil
moisture but decreased with higher SOC (R2 = 0.37, P = 0.014, n = 26) and increased with greater biomass
production (R2 = 0.11, P = 0.045, n = 33). Our data suggest that within the timeframe of the study, biochar is
stored predominantly as free particulate OC in the silt and clay fraction and promoted a movement of
native SOC from larger-size aggregates to the smaller-sized fraction in the short-term (2 years).
ã 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Biochar (pyrogenic organic matter) has shown promise for
contributing to the triple benefit of improving soil productivity
(Biederman and Harpole, 2013; Qian et al., 2015), sequestering soil
carbon (Lehmann, 2007; Schneider et al., 2011; Lorenz and Lal,
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2014) and reducing an emission of greenhouse gasses (i.e. CO2, CH4

and N2O) in agricultural soils (Cayuela et al., 2013; Fungo et al.,
2014). According to Woolf et al. (2010), sustainable global
implementation of biochar projects can potentially off-set 12%
(1.8 Pg CO2-Ce per year) of current anthropogenic CO2-C equivalent
emissions. However, the rate and scale of soil organic matter (SOM)
turnover following biochar amendment depends on complex
associations among biochar as well as soil properties (pH, native
SOM, texture, mineralogy), agro-ecological conditions (precipita-
tion and temperature), and management interventions such as use
of manure and mineral fertilizers, tillage and irrigation.
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Table 1
Physical-chemical properties of the soil at start of the experiment and the
amendments used in the field trial (nd = not determined).

Biochar and soil Green manure (T. diversifolia)

Property Biochar Soil Property

C (g kg�1) 868 23.3 N (mg g�1) 21.5
N (g kg�1) 27 21.0 P (mg g�1) 2.3
pH 6.31 6.01 K (mg g�1) 43.2
EC (S mm�1) 196 88.0 Ca (mg g�1) 13.6
K (mg kg�1) 1490 223 Mg (mg g�1) 2.6
Ca (mg kg�1) 1920 1950 S (mg g�1) 2.5
Mg (mg kg�1) 150 312 Mn (mg kg�1) 264
Mn (mg kg�1) 188 782 B (mg kg�1) 53.2
S (mg kg�1) 36.5 14.0 Zn (mg kg�1) 89.7
Cu (mg kg�1) 0.77 1.97 Mo (mg kg�1) 1.29
B (mg kg�1) 1.07 0.33 Fe (mg kg�1) 951
Zn (mg kg�1) 108 13.5 Cu (mg kg�1) 11.0
Na (mg kg�1) 180 15.9 Na (mg kg�1) 72.7
Fe (mg kg�1) 164 67.2
P (mg kg�1) 135 9.30
Al (mg kg�1) 559 939
C.E.C (meq 100 g�1) 18.2 16.2
Silt (%) nd 17.5
Sand (%) nd 10.7
Clay (%) nd 71.6
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Soil aggregation is a good indicator of soil quality because it
mediates microbial feedbacks of C and N cycling in soils (Kapkiyai
et al., 1999; Jimenez et al., 2011; Demisie et al., 2014). Biochar
incorporation into soil can improve soil aggregate stability (Liu
et al., 2014; Zhang et al., 2015; Obia et al., 2016) by increasing
exchangeable cation status of the soil, such as calcium (Enders
et al., 2012; Jien and Wang, 2013), thereby inhibiting clay
dispersion and associated disruption of soil aggregates. Biochar
can also affect aggregation by the replacement of Na+ and Mg2+ in
clay and aggregates through adsorption on its surfaces (Kwon and
Pignatello, 2005). Under acidic environments such as those in
highly weathered soils of the humid tropics, the hydroxyl and
carboxylic groups on the oxidized biochar surface could also
adsorb clay particles to increase macro-aggregate formation (Jien
and Wang, 2013). However, the location of SOC within the
aggregates and its chemical characteristics, which affect the rate of
its decomposition (Balesdent et al., 1998; Christensen, 1996; Luo
et al., 2014) and thus is sequestration potential, have not received
much attention.

The effect of biochar on soil aggregation is disputed (c.f.
Busscher et al., 2010; Peng et al., 2011; Zhang et al., 2015). Whereas
an increase in soil aggregate sizes as a result of an increase in SOC
when synthetic fertilizers are applied to the soil has been widely
reported (Halvorson et al., 1999; Plaza-Bonilla et al., 2012), some
evidence of the reverse trend has also been observed (Sainju et al.,
2003; Khan et al., 2007; Le Guillou and Angers, 2011; Plaza-Bonilla
et al., 2012). Biochar is expected to increase aggregation because it
can act as a nucleus of aggregation, similar to other particulate
organic matter or microorganisms, especially because biochar
increases microbial biomass (Lehmann et al., 2011). Furthermore,
increased OM input by roots and microbial mucilage following
biochar amendment would increase aggregation (Abiven et al.,
2015). Hence, it is unclear how N fertilizers in combination with
biochar can affect both soil aggregate size distribution and the
resultant physical protection of SOC.

When biochar is applied with green manure as Tithonia
diversifolia, there is likely a greater amount of microbial activity
(Li et al., 2012) and concomitant production of metabolites which,
through a variety of bonding mechanisms, may contribute to
aggregate build-up. Mechanisms of interaction between biochar
and the soil matrix that may result in soil stabilization include (1)
occlusion in aggregates (Bachmann et al., 2008), (2) formation of
biochar-cation complexes (interactions with polyvalent cations of
soil minerals), or (3) interactions via polyvalent cations with soil
mineral surfaces (OM-mineral associations) (von Lützow et al.,
2007). Thus, biochar can be a binding agent for aggregate
formation and stabilization. However, our understanding of these
effects on aggregation of soil remains speculative. Understanding
the effect of introducing biochar in such a system will aid
predicting the long-term effects of these cropping practices on soil
quality and C storage.

The objectives of the study were to determine the effect of
biochar on (i) size and distribution of soil aggregates, (ii) changes in
the content of SOC in different soil fractions, and (iii) relationships
among aggregation, SOC, soil respiration (CO2 emission) and
biomass production under integrated soil fertility management on
an Ultisol of the humid tropics. We hypothesized that under
conventional hand-hoe tillage practices, (i) biochar would increase
soil aggregation because over time, biochar gets more oxidized
(Cheng et al., 2008), so there may be more cation bridges between
clay and biochar (increasing its ability to form organo-mineral and
Biochar-SOM interactions), (ii) soil aggregation increases with an
increased amount of easily mineralizable organic matter inputs
(such as T. diversifolia manures) because of the increased microbial
activity and therefore mucilage, but might decrease with addition
of mineral N fertilizer (such as urea) because of increased
decomposition of easily mineralizable SOM, and (iii) increased
soil respiration is related to SOM increases and larger aggregates.

2. Materials and methods

2.1. Study site

The field experiment was established in September 2012 at
Kapsengere on the southern Nandi hills in western Kenya. The sites
receive �2000 mm mean annual rainfall in a bimodal distribution,
with two rainy seasons per year (March–July and September–
January) with a mean annual temperature of 26 �C. Precipitation
and air temperature were monitored throughout the experiment
with the help of a weather station located near the experimental
field. The soil is classified as Typic Kandiudults (USDA, 1999)
developed on biotite-gneisses parent material. The natural
vegetation is composed of tropical rainforest of Guineo-Congolian
species. The trial was conducted for four consecutive maize rainy
seasons (September 2012–August 2014).

2.2. Preparation of the biochar and T. diversifolia

The biochar was produced by chopping and grinding Eucalyptus
wood so as to pass through a 2-mm sieve. The sieved material was
then pyrolyzed at a ramp of 5 �C min�1 to a maximum temperature
of 550 �C and retained for one hour before cooling to room
temperature. In the laboratory, the resultant biochar was
characterized for pH, surface area, CEC, elemental composition.
T. diversifolia was prepared by cutting leaves from the field and
chopping them into 50-mm lengths, air-dried and ground to pass
through a 1-mm sieve before field application. The chopping and
grinding were to ensure uniform application in the field and reduce
effects on soil physical properties. The physical and chemical
characteristics of the above materials are presented in Table 1.

2.3. Experimental design

The treatments were selected to represent presence and
absence of biochar as well as low and high input of Tithonia green
manure, with and without mineral nitrogen (N) fertilizer. This
arrangement represented a range of conventional management
practices of many small-holder farmers in integrated soil fertility
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management systems. Most farmers in the study area are small
scale, resource poor, mixing small quantities of each of these
amendments. The experiment was laid out in a randomized
complete block design with three replicates. The treatments
included the following: two levels of biochar (0 and 2.5 t ha�1);
three levels of green manure applied as T. diversifolia (0, 2.5 and
5 t ha�1); and two levels of mineral N applied as Urea (0 and
120 kg N ha�1) (Table 2). Each treatment was established in a 2 � 2-
m plot separated by a one-meter distance within and between
rows. Due to the inherently low fertility of the soil, 30 kg ha�1 of
P2O5 as TSP and 30 kg ha�1 of K2O as Muriate of Potash were
applied to each plot.

2.4. Management of experiment

Conventional tillage, where a hand-hoe is used to mix the top
0.10–0.15 m of the soil, was used during land preparation at the
start of each season, and the two weeding times during each
season. Application of biochar was done once at the start of the first
season on 3rd October 2012. Constant amounts (2.5 or 5 t ha�1,
Table 2) of green manure, phosphorus (TSP) and potassium (MoP)
were applied to each plot once at the start of each season. Mineral
N (urea) was applied in two splits; 40% at planting and 60% 30 days
after planting. The biochar, manure and mineral fertilizer were
broadcast on the soil surface by hand and incorporated into the top
0.1 m soil. Two seeds of the maize cultivar HB 513 were planted at a
spacing of 0.25 m within and 0.5 m between rows (40 plants per
planting hole). Weeding was done at 30 and 50 days after planting
then tilled with a hand-hoe to a depth of 0.1 m. Thinning was done
during the first weeding to retain one plant per pocket. In total,
four consecutive seasons of maize crop were harvested (3rd
October 2012 through 17th August 2014).

2.5. Soil respiration and above ground biomass

We used data on soil respiration (CO2 evolution at the soil
surface) and aboveground biomass. Briefly, measurements were
conducted using a static closed chamber method. The chamber
consisted of a PVC tube (diameter = 0.3 m; height = 0.15 m)
transversely divided into two parts to make a base (0.05 m) and
a cover (0.1 m). The base was driven into the soil to �0.02 m below
the soil surface. To ensure air-tight conditions, a rubber ring was
placed between the base and the cover. A photo-acoustic infrared
field gas monitor (INNOVA 1402, Lumasense Technologies A/S,
Table 2
Experimental treatments for determining the effect of Biochar, T. diversifolia green manu
Kenya.

Treatment Biochar Green manu

Rate
(t ha�1)a

Code Rate
(t ha�1)b

1 (B0T0U0)(Control) 0.0 B0 0.0 

2 (B0T2.5U0) 0.0 B0 2.5 

3 (B0T5U0) 0.0 B0 5.0 

4 (B0T0U120) 0.0 B0 0.0 

5 (B0T2.5U120) 0.0 B0 2.5 

6 (B0T5U120) 0.0 B0 5.0 

7 (B2.5T0U0) 2.5 B2.5 0.0 

8 (B2.5T2.5U0) 2.5 B2.5 2.5 

9 (B2.5T5U0) 2.5 B2.5 5.0 

10 (B2.5T0U120) 2.5 B2.5 0.0 

11 (B2.5T2.5U120) 2.5 B2.5 2.5 

12 (B2.5T5U120) 2.5 B2.5 5.0 

a One kg of biochar per treated plot.
b 1 and 2 kg of T. diversifolia, respectively. Biochar C = 86.8%, T. diversifolia C �48%.
c 100 g per treated plot.
Ballerup, Denmark) was used to analyze the fluxes in the field. The
gas monitor was connected to the chamber by two 0.7 m-long
Teflon tubes as gas inlet and outlet. Inside the cuvette, air humidity
and temperature were monitored by a digital thermo-hygrometer
(PCE-313A, Paper-Consult Engineering Group, Meschede,
Germany) attached to the cover from the outside and only the
sensor reached inside the chamber through a rubber screw
connector. Two chambers were set up in each plot. For each gas
sampling event INNOVA recorded four measurements at 2-min
intervals after closing the chamber. Flux measurements were
conducted weekly except during dry periods where bi-monthly
measurements were taken. Measurements were taken at a similar
time during the day (9–11a.m.). Temperature ranged from 23 to
28 �C. No significant relationship between temperature and CO2

flux was observed.

2.6. Soil sampling and analysis

Composite soil samples were taken from five random locations
within each plot from a 0–0.15 m depth on 17th August 2014 (24
months after biochar application). Soil cores (d = 50 mm, l = 50 mm;
v = 100 cm3) were used to collect samples for bulk density
determination. Approximately 200 g of the air-dry, 2-mm sieved
soil samples was packed in zip-locks and taken to the laboratory
for analysis.

2.7. Soil fractionation and chemical analysis

Particle size fractionation procedure was used to determine the
mean weight diameter (MWD) as an indicator of soil aggregate
distribution. Bulk soil was divided into four size fractions; (i) Large
Macro-aggregates (>1000 mm, designated LM); (ii) Small Macro-
aggregates (250–1000 mm, designated SM); (iii) Micro-aggregates
(250–53 mm, designated M) and (iv) Silt + Clay (<53 mm, designat-
ed S + C). Four sieves corresponding to these size classes were
sequentially arranged vertically. Eighty grams of an air-dried soil
sample, without disturbing the aggregates was put on the first
sieve of the set in a water bucket and was gently moistened for
10 min. After the soil was moistened with water, aggregates were
separated by moving the sieve vertically at 30 strokes min�1 for
5 min. At the end of wet-sieving, all aggregate-size fractions
remaining on each sieve were collected, dried at 60 �C, and the
sand and aggregates were separated (Wang et al., 2012). The mean
re and Urea on soil aggregate distribution and C content in a maize field in western

re (T. diversifolia) Mineral N fertilizer (Urea)

Code Rate
(kg N ha�1)c

Code

T0 0.0 U0
T2.5 0.0 U0
T5 0.0 U0
T0 120 U120
T2.5 120 U120
T5 120 U120
T0 0.0 U0
T2.5 0.0 U0
T5 0.0 U0
T0 120 U120
T2.5 120 U120
T5 120 U120
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weight diameter (MWD, mm) was calculated as follows:

MWD ¼
Xn

i¼1

wi:xi

where x is the average diameter of the openings of the two
consecutive sieves, and wi the weight ratio of aggregates remained
on the ith sieve. For the determination of aggregate size
distribution, the weight ratio of aggregates of each sieve to the
total weight of aggregates was calculated. Then, the C and N
content in the various size fractions was determined. Soil pHwater

was determined with a glass electrode (Soil:Water = 1:5 w/v). Soil
organic C and total N were measured with an Elementar Vario max
CNS Analyzer (German Elementar Company, 2003). It was assumed
that TOC = SOC since these acid soils have negligible amounts of
inorganic carbonates.

2.8. Statistical analysis

The cumulative CO2 flux for each treatment was derived using a
linear Trapezoidal rule with sampling dates as the time intervals.
Changes in SOC content were calculated as the difference between
values at the beginning and end of the sampling period, as well as
subtracted the C addition from biochar and T. diversifolia. Biochar-
induced differences for each treatment were calculated as the
difference between the treatment value and that of the control.
Treatment main effects and their interaction on MWD and C
content in soil aggregates were examined using fixed effect
analysis of variance (ANOVA). Post Hoc separation of means was
done using Least Significant Difference (LSD) at 5%. Linear
regression was used to study the relationship between MWD
and SOC, aboveground biomass and soil respiration as well as that
between SOC and above ground biomass (C).

3. Results

3.1. Distribution and MWD of water stable aggregates

The values of MWD ranged from 378 mm to 525 mm (mean �
SE = 423 � 23) (Fig. 1). The biochar addition had no effect on MWD,
but the combination of biochar with either Tithonia (B2.5 + T2.5/5) or
urea (B2.5 + U120) significantly increased MWD by 34 � 5.2 mm (8%)
and 55 � 5.4 mm (�13%), respectively compared to the control. The
B2.5 + T2.5/5 and B2.5 + U120 treatments were themselves not
significantly different. The T2.5/5 + U120 treatment significantly
increased MWD by 17 �4.1 mm (Fig.1) compared to the control and
the rate of Tithonia addition had no significant effect on MWD. The
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Fig. 1. Effect of additions of biochar (B), T. diversifolia (T) green manure and urea (U)
on mean weight diameter of soil aggregate (values indicate amendment rate in
t ha�1). Error bars are standard error, n = 3, means with the same letter are not
significantly different at p < 0.05.
MWD of the B2.5 + U120 was comparable to that of the B2.5 + T2.5
treatment, and was significantly lower than B2.5 + T5.0. MWD was
not significantly different from the control under the three-
amendment mixture (P > 0.05).

Table 3 shows the results of ANOVA of the main effects of each
amendment as well as their interactions while Fig. 2 shows the
effect of the treatments on the distribution of the different
aggregate size fraction in the bulk soil. The SM dominated the size
distribution (45%) followed by M fraction (29%), then S + C (15%).
The LM were the least represented fraction (10%) (Table 3). Sole
biochar treatment had no effect on size proportion. Sole T.
diversifolia increased the S + C fraction by 8% (F = 3.8; P = 0.030) after
two years of the field trial.

Overall, the proportion of LM increased by 53% while the S + C
fraction decreased by 46% over the two years of the field
experiment (Fig. 2). The proportion of the LM fraction reduced
by 14% but the proportion of the M fraction did not change over the
two years. The B + T and B + U treatments significantly increased
the proportion of the SM fractions by 15% (Table 3). There was no
significant difference in size proportion between T2.5 and T5. Sole
urea additions decreased the proportion of LM but increased the
S + C fraction (Fig. 2). The B + T + U mixture significantly increased
the proportion of the LM by 7.0 � 0.8%, but significantly reduced
the proportion of the S + C fraction by 5.2 � 0.23%, independent of
the amount of T. diversifolia (Fig. 2). The S + C fraction was not
affected by any of the amendments, in sole or in combined
application.

3.2. SOC in aggregates

The S + C fraction contained the largest proportion of SOC (30%)
followed by M (25 g kg�1). The LM and SM had a similar mean
content of SOC content (23 g kg�1). At the end of the two years,
mean SOC contents in all the soil fractions had increased by a range
of 0.44–4.69 g kg�1 (1.92 � 1.06 = Mean � SE). The increase in SOC
was 9.6 � 1.0, 5.7 � 0.8, 6.3 � 1.1 and 4.2 � 0.9 g kg�1 for LM, SM, M
and S + C, respectively. The increase in SOC content in LM was
significantly higher than for the SM, and the SM was not
significantly different from M but significantly higher than the
SOC content in the S + C fraction. Overall, biochar and T. diversifolia
increased SOC. In the S + C fraction, urea and T. diversifolia together
increased SOC by 2.0 � 0.2 g kg�1 (�7%) without biochar but had no
effect when biochar was added.

3.3. MWD, SOC and soil respiration

MWD was inversely related to SOC and SOC increase explained
37% of the decrease in MWD (Fig. 3A). In addition, MWD increased
with increasing aboveground biomass. The amount of increase in
MWD attributed to biomass production was 11% (Fig. 3B). SOC and
aboveground biomass were also inversely related (Fig. 3C). There
was no significant relationship between MWD and soil respiration
(CO2 emission) (Fig. 3D).

4. Discussion

4.1. Size and distribution of soil aggregates

Our expectation that biochar would consistently increase soil
aggregate formation, was not met entirely. Biochar alone may not
have increased aggregate size significantly after two years because
aggregates formed in the early stages could have been broken
down due to tillage at planting, and weeding. Our results are in
agreement with those of others (e.g. Herath et al., 2014; Peng et al.,
2016) who found no effect of biochar on micro-aggregation.
However, other studies have reported increases in aggregate size



Table 3
Variance analyses of effects of biochar, T. diversifolia and urea and their interactive effects on soil aggregate properties (LM large macro-aggregates; SM small macro-
aggregates; M micro-aggregates; S + C silt and clay).

Factor LM SM M S + C Total C

F P F P F P F P F P

B 0.06 0.805 0.0 0.946 1.0 0.332 0.0 0.974 12.31 0.001a

T 0.25 0.782 0.2 0.847 0.68 0.520 9.1 0.002a 1.75 0.176
U 0.04 0.853 10.2 0.005a 0.12 0.734 31.5 0.000a 2.84 0.093
B � T 1.89 0.178 0.0 0.960 0.69 0.513 1.6 0.225 0.16 0.856
B � U 0.00 0.990 0.2 0.682 0.88 0.360 0.0 0.848 0.17 0.679
T � U 0.43 0.659 1.0 0.404 0.59 0.568 9.0 0.002a 0.08 0.926
B � T � U 1.85 0.184 5.0 0.019a 7.1 0.006* 17.0 0.000a 0.19 0.827

a Values in bold are statistically significant.
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(Sun and Lu., 2013; Liu et al., 2014; Abdelhafez et al., 2014).
Differences in the effect have probably occurred due to time,
application rate and texture of biochar used. For example, Liu et al.
(2014) reported increased aggregation at 40 t ha�1, but not at
20 t ha�1. Sun and Lu (2013) also reported increased aggregation
with 90 t ha�1 straw biochar but no difference with wood chips
biochar at the similar rate.

The positive relationship between MWD and biomass
growth (Fig. 3B) could be due to increased easily mineralizable
C input. Ability of biochar to improve soil structure and
infiltration can also increase water viscosity, thereby increasing
soil aggregation (Bandyopadhyay and Lal, 2014; Regelink et al.,
2015). However, this relatively weak relationship suggests
either short-term build-up of unstable soil aggregates, which
soon break down, or time was insufficient for a slow buildup
of aggregates. It is possible that aggregation could have been
limited by the type of microbially derived OM during the
decomposition and degradation of T. diversifolia and biochar,
respectively. According to Bronick and Lal (2005), easily decom-
posable inputs such as green manure have strong but transient
effects on aggregate stability while more recalcitrant inputs such
as decomposed manures would show weak but long-term effects.
There is also evidence that mucilage types (or chemical
saccharides compositions) and amounts secreted from different
plant species, as well as soil moisture levels and soil fauna also
influence soil aggregate structure (Degens and Sparling, 1996; Six
et al., 2004; Bossuyt et al., 2005).

The indifference in MWD with biochar additions alone could be
related again to the quantity and quality of biochar applied
(texture, pH, CEC). The soil used in our study was an Ultisol, which
is relatively high in 1:1 clay, low in CEC, and in base cations and we
would expect such a soil to respond to biochar amendment by
increasing aggregation (cf Gentile et al., 2010; Ouyang et al., 2013).
According to Gentile et al. (2010), aggregates of fine-textured soils
are more responsive to organic matter inputs compared to the
coarse-textured ones. However, Liu et al. (2012) found increased
aggregation in two silt loam soils but not in two sandy loam soils,
suggesting that higher clay content would increase likelihood of
aggregation. Our soil was dominated by relatively a larger particle
size fraction (250–1000 mm), which could partly explain the
limited response. The carboxylic and phenolics, which are the
predominant functional groups responsible for surface charge in
biochar, decreased with increased pyrolysis temperature (Amo-
nette and Joseph, 2009; Keiluweit et al., 2010). The feedstock used
for making the biochar as well as the relatively high pyrolysis
temperature (550 �C) of our biochar could have resulted in lower
Table 4
Content of SOC (g kg�1 soil) associated with different soil fractions. SE = standard Error, n
S + C silt and clay).

Treatment ID LM SM M

Mean SE Mean SE M

1 (B0T0U0)(Control) 27.4 (�0.24)a 25.5 (�0.46)ab 2
2 (B0T2.5U0) 25.7 (�0.67)b 25.3 (�0.43b 2
3 (B0T5U0) 25.7 (�0.81)b 25.6 (�0.75)ab 2
4 (B0T0U120) 25.9 (�0.60)b 23.6 (�1.22)c 2
5 (B0T2.5U120) 24.9 (�0.77)c 26.0 (�0.48)a 2
6 (B0T5U120) 25.3 (�1.34)a 24.8 (�1.56)bc 2
7 (B2.5T0U0) 24.3 (�0.68)cd 24.6 (�1.44)bc 2
8 (B2.5T2.5U0) 24.2 (�1.17)cd 23.9 (�1.11)c 2
9 (B2.5T5U0) 24.8 (�1.17)c 23.8 (�1.08)c 2
10 (B2.5T0U120) 24.2 (�0.78)cd 24.1 (�1.44)c 2
11 (B2.5T2.5U120) 22.5 (�1.41)e 23.8 (�0.84)c 2
12 (B2.5T5U120) 23.9 (�1.27)e 24.1 (�0.72)c 2

In each column, means with the same letter are not significantly different at p < 0.05.
surface charge as indicated by relatively low CEC (Table 1), hence
low propensity for aggregation over the time period studied here.

The increase in the proportion of micro-aggregates with T.
diversifolia and urea could be related to the increased biomass C
from microbial C after decomposition of T. diversifolia, as well as
plant root biomass. Indeed Whalen and Chang (2002) showed
that the increase in SOC caused by the application of manures is a
direct result of the manure composition and an indirect result of
the increased crop growth and crop residue in response to the
nutrient supply. During SOM decomposition by microorganisms,
synthesis of hydrophilic polysaccharides promotes inter-particle
cohesion through adsorption to mineral matter (Chenu, 1989;
Verchot et al., 2011; Demisie et al., 2014), thus increasing soil
aggregation.

4.2. SOC in soil aggregate

We postulated that easily mineralizable C derived from T.
diversifolia could end up in the micro-aggregates. These micro-
aggregates would later be incorporated into macro-aggregates.
The build-up of micro-aggregate C observed in our study (Table 4)
is in support of the “bottom-up” process of soil aggregation
proposed by Verchot et al. (2011) whereby micro-aggregates form
through the interaction between mineral surfaces and organic
matter with little protection in early stages of micro-aggregate
formation (Emerson, 1959; Tisdall and Oades, 1982; Lehmann
et al., 2007). This proposition is further supported by Kinyangi
et al. (2006), and Verchot et al. (2011) that aliphatic-C, which tends
to form thin films on mineral surfaces and is found throughout the
microstructure of the aggregates, appears to be the responsible
agent for stabilization of micro-aggregates. Verchot et al. (2011),
using d13C, also found that the portion of the new carbon from the
trees in an agroforestry fallow was sequestered in the micro-
aggregate.

We did not observe a significant change in macro-aggregate C
content since our biochar was predominantly fine-textured
(<250 mm) compared to Herath et al. (2014) for example, who
had relatively larger-sized particle sizes of biochar. On the other
hand, some studies (c.f. Herath et al., 2013; Zhang et al., 2015)
found higher C in macro-aggregate fractions than in the smaller
ones, indicating that biochar amendments could particularly
increase C storage in these larger macro-aggregate fractions as
free particulate organic matter. Although air-drying soils before
fractionation can have affected on aggregation to some extent
(Warkentin and Maeda, 1980), we assumed that the effect, if any,
was similar for all treatments.
 = 3 (LM large macro-aggregates; SM small macro-aggregates; M micro-aggregates;

 S + C TOC

ean SE Mean SE Mean SE

6.4 (�1.18)c 31.6 (�0.48)c 29.5 (�0.18)a
8.5 (�0.86)a 32.4 (�0.84)ab 28.2 (�0.88)b
7.2 (�1.06)b 33.6 (�1.49)a 27.8 (�0.65)b
7.9 (�0.58)ab 33.3 (�0.69)a 27.7 (�0.06)b
6.4 (�0.85)c 31.9 (�1.24)c 27.3 (�0.56)b
7.7 (�1.79)ab 32.1 (�1.92)c 27.5 (�0.66)b
7.0 (�1.98)c 32.5 (�1.91)ab 27.1 (�0.90)bc
6.8 (�1.32)c 31.7 (�3.84)d 25.9 (�0.13)c
6.5 (�0.38)c 31.3 (�1.03)d 26.6 (�0.65)c
5.0 (�0.75)d 30.8 (�1.24)cd 26.0 (�0.61)c
5.3 (�1.13)d 32.5 (�0.52)b 25.8 (�0.01)c
5.4 (�0.90)d 32.6 (�0.58)b 26.3 (�0.81)c
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4.3. Relationship between MWD and SOC, soil respiration and biomass
production

The negative relationship between MWD and SOC could be
explained by the fact that at this time scale, the highest values of
MWD were related to the microbial activity induced by the green
manure. In our case, the soil is highly weathered with free ions
such as Al and Fe as well as sesquioxides, and this could
significantly curtail aggregation over relatively short time scales
(<10 years). Arthur et al. (2014) also observed no relationship
between SOC and aggregation when several soil types were
amended with 7.5 t ha�1 of ground rape shoot manure. In our case,
the amount of manure added was less than that used by Arthur
et al. (2014) and that could partly explain the absence of any
significant response.

The increase in CO2 emission (soil respiration) is attributed to
the increase in mineralizable C particularly in relatively low-C
soils (Sagrilo et al., 2014). Improvement in soil aeration, following
biochar addition has also been reported but the lack of a change
in MWD and bulk density rules out this explanation from our
study.

Increased plant growth was expected to increase aggregation
via OM input in associated root biomass, but a reverse
relationship was observed instead. Also, we did not observe a
significant relationship between MWD and CO2 evolution. Mizuta
et al. (2015) found that although polysaccharides such as starch
and cellulose accelerated soil aggregation, the decomposition of
these amendments influenced only aggregation, not aggregate
stabilization. It has also been reported that the role of organic
matter (aggregating or disaggregating) depended on its chemical
composition and presence of other binding agents (Goldberg
et al., 1990; Mizuta et al., 2015; Wu et al., 2016). The conventional
hand-hoe tillage system used in this study is what is practiced
by most farmers in the area and it may compromise short-term
build-up of soil aggregates. Therefore, within the timeframe of
this study, the aggregated distribution benefits of relatively
low organic input may not be evident. Long-term trials testing
various tillage practices are required to clarify the interaction
between biochar and other amendments on aggregation and
stabilization of soil aggregates as a means to improve soil C
sequestration.

5. Conclusions

Application of biochar alone did not affect aggregate stability
of the humid Ultisol within two years under conventional hand-
hoe tillage practice. However, when applied together with easily
mineralizable T. diversifolia at a rate of 2.5 t ha�1, it increased
aggregate proportion of medium-sized soil aggregates and
resulted in increased SOM in the micro-aggregates. Mineral
fertilizer reduced macro-aggregate stability at least in the short
term, but SOC increased in the micro-aggregates. This may result
in increased soil stability in the long term. We did not find a
relationship between soil aggregation and soil respiration but
biomass was positively related to the MWD as an indicator of
soil aggregate stability. This indicates that OM input by plants is an
important feedback mechanism for soil aggregation. The pattern
observed in our data suggests that within the timeframe of the
study, biochar is stored as free particulate OC in the micro-fraction.
This shows a tendency to shift native SOC from the larger-
size aggregates to the smaller-sized fraction in the short-term (2
years). Therefore, applying easily mineralizable organic matter
such as T. diversifolia green manure may hasten build-up of
macro-aggregates in the long term but this needs further
investigation.
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