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Charcoal stocks were determined in a chronosequence of soils which have been converted to agricultural
land use by slash-and-burn up to 100 years ago. With time, opposite to our assumptions, the charcoal
chemical quality, as measured by molecular markers for pyrogenic carbon, did not change and charcoal
stocks did not show a clear decrease. Our results indicate that charcoal may resist chemical degradation
even when exposed to intense weathering in a tropical climate.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Charcoal, also referred to as fire-derived or pyrogenic carbon
(PyC), is a residue of incomplete combustion of biomass and is
ubiquitous in soils, but loss processes and rates are still poorly
understood (Preston and Schmidt, 2006). Up to now there are only
a few studies investigating the long-term (i.e. decadal) fate of PyC in
soils, and results are ambiguous. Short-term (up to 3.2 years) labo-
ratory incubation experiments revealed that <2% of PyC produced at
>200 °C was mineralized (Baldock and Smernik, 2002; Hamer et al.,
2004; Bruun et al., 2008; Kuzyakov et al., 2009; Nguyen et al., 2010;
Zimmerman, 2010). There are only two published long-term (100
years) field studies which observed loss of PyC in tropical soil by
spectroscopy (Nguyen et al., 2008: 70% loss), or in a steppe soil by
molecular marker measurements (Hammes et al., 2008: 25% loss),
respectively. Nguyen et al. (2008) found increasing oxidation at the
surface of manually isolated PyC pieces using X-ray photoelectron
spectroscopy (XPS) in the tropical soil. However, qualitative changes
of the finely distributed PyC in the bulk soil have not been investi-
gated so far. The unique advantage of the molecular marker method
over the previously used spectroscopic methods is to gain greater
insight into changes in chemical quality over time of PyC in the bulk
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material. For example, one of the molecular markers, B6CA, is
particularly useful to estimate the degree of aromatic condensation in
the samples (Hammes et al., 2008; Schneider et al., 2010). Indeed,
qualitative changes in the bulk material, i.e. preferential accumulation
of more condensed aromatic backbone of the PyC structures, were
found for the steppe soils using the molecular marker method
(Hammes et al., 2008). Here we applied the molecular marker method
used in the steppe soil (Hammes et al., 2008) to the tropical soil
samples (Nguyen et al., 2008) to follow the PyC in a soil chronose-
quence (2, 3, 5, 20, 30, 45, 80, 100 years since the last PyC deposition).
We hypothesized that we would find a selective enrichment of more
condensed (and thus more chemically stable) forms of PyC in the bulk
soil.

2. Materials and methods

Following a space-for-time approach, the soil samples (Humic
Nitosol, FAO-UNESCO, 1998) were collected in an area where forests
were converted from forest to agricultural land by slash-and-burn
practice up to 100 years ago. Soils were under permanent cultiva-
tion with no new fires since the conversion. The area is located in
South Nandi (00°04'30” N, 34°58'34"” E), western Kenya with
altitudes ranging from 1600 to 1800 m above sea level, mean
annual temperature of about 19 °C and mean annual precipitation
of about 2000 mm (Nguyen et al., 2008). Nine 200 cm?® core sub-
samples from the upper 0.1 m of soil were sampled in each field
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and then combined into one composite soil sample (Solomon et al.,
2007; Kimetu et al., 2008; Kinyangi, 2008; Nguyen et al., 2008).
This chronosequence opened the unique possibility to investigate
changes in bulk PyC over 100 years in a space-for-time approach. As
a trade-off we had to accept the associated uncertainties, including
the varying (and to us unknown) amounts of PyC produced during
the different fires, and possible deposition of PyC from near-by
burns.

In this study we used benzene polycarboxylic acids (BPCA)
molecular markers for pyrogenic carbon (PyC) assessment (Glaser
et al., 1998; Brodowski et al., 2005; Schneider et al., 2010). Briefly,
samples (n = 3) were pretreated with 4M trifluoro acetic acid (4 h,
105 °C), followed by conversion of PyC into BPCA by nitric acid
oxidation (8 h, 170 °C). The digest was purified and subsequently
derivatized and analyzed on a gas chromatograph equipped with
flame ionization detector. The acids with 3, 4, 5, and 6 carboxyl
functions (B3CA, B4CA, B5CA, and B6CA, respectively) were identi-
fied and summed up to represent the amount of pyrogenic molec-
ular markers derived from the material. Data was normalized to the
BPCA-C content measured in a reference soil (Table S1) (Schneider
et al., 2010).

3. Results and discussion

3.1. Quality of PyC

The most striking feature of our data is that the proportions of
B6CA remained constant over a century at about 35% (Fig. 1a),
which is in contrast to the previous observation of Hammes et al.
(2008) for a steppe soil. There, decreasing PyC stocks (—25%) over
a century had been accompanied by a preferential accumulation of
the highly condensed, aromatic backbone of PyC (Hammes et al.,
2008), indicated by increasing proportions of B6CA.

It seems that chemical changes, such as increasing oxidation,
are limited to the surface of PyC particles, whereas the more
protected PyC particle inside remained largely unaffected by
oxidation processes (Nguyen et al., 2008). There are indications
that coarser PyC particles after deposition are initially degraded to
finer particles (Bird et al., 1999) and then subsequently protected
from further degradation by interaction with soil minerals
(Nguyen et al., 2008), which could explain the absence of chemical
changes in the finely distributed bulk PyC, which was investigated
here.

3.2. Quantity of PyC

Both organic carbon (OC) and PyC had been present in the forest
before land conversion (labeled as “forest” in Fig. 1), and the last PyC
input happened when land was converted to agriculture using slash-
and-burn (Nguyen et al., 2008). After conversion and with increasing
time of agricultural use, OC stocks decreased rapidly (Fig. 1b), an
observation typically made for such land use changes (e.g. Brady and
Weil, 2001). For PyC stocks quantified by BPCA, no clear trends could
be observed. If there were trends with time, they were obscured by
the large spatial heterogeneity of PyC stocks. To test our results for
plausibility, we compared them to earlier results by Nguyen et al.
(2008), who measured PyC stocks on identical samples but with
a different method (nuclear magnetic resonance spectroscopy
combined with a molecular mixing model, NMR-MMM). As a result,
data of both methods correlate well (7 = 0.80, insert Fig. 1b), and
show the typical systematic offset, with BPCA values being approxi-
mately 1/5 of those measured by NMR-MMM. The systematic offset
reflects the fundamentally different principles of the two methods.
The BPCA method measures molecular markers released upon wet
chemical oxidation as a representative subfraction of PyC, while NMR-
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Fig. 1. The PyC quality (a) and quantity of bulk soil organic carbon (SOC) and the fire-
derived PyC subfraction (b) in soil chronosequence samples with increasing time of
conversion from forest to agricultural land by slash-and-burn. The “forest” sample
represented the pre-existing OC and PyC stocks in the forest soil. a) Relative contri-
butions of BPCA marker molecules (B3CA: hemimellitic and trimellitic acid; B4CA:
prehnitic, mellophanic and pyromellitic acid, B5CA: pentacarboxylic acid; B6CA:
mellitic acid). B6CA, a measure for the degree of condensation in PyC, did not change
over the observation period. (n = 3; 45 years sample n = 1) b) SOC (white circles, left
scale) and PyC stocks, measured as benzene polycarboxylic acids carbon (BPCA-C)
(black circles, right scale). Insert: comparison of PyC stocks measured by nuclear
magnetic resonance spectroscopy with molecular mixing model (NMR-MMM; Nelson
and Baldock, 2005) (Method NMR, x-axis) and BPCA molecular markers (Method BPCA,
y-axis). Method BPCA yielded consistently lower numbers, but both methods showed
a close linear relationship (dashed line, r? = 0.80, y = 0.045 + 0.14*x, p = 0.05).
Standard errors for analytical replicates (n = 3) are smaller than symbol size. *Organic
carbon stocks and NMR-MMM data taken from Nguyen et al. (2008).

MMM measures the contribution of aryl C to the NMR spectrum and
from that calculates the content of PyC (Nelson and Baldock, 2005;
Hammes et al., 2007; Kaal et al., 2008).

4. Conclusions
Over a century of weathering in a tropical climate,

e The space-for-time approach used in this study showed that OC
stocks clearly decreased, but total PyC stocks did not.

e We found no indications for a changing chemical quality of the
bulk PyC, although we expected the decomposition of less
stable PyC fractions to be accompanied by a relative enrich-
ment of highly condensed aromatic PyC fractions.

Interestingly, we applied the molecular marker method (BPCA)
to bulk soil samples and our data on quantity and quality of PyC is
consistent with those results obtained by NMR-spectroscopy for
quantification of PyC and X-ray photoelectron spectroscopy for
chemical properties of hand-picked ground and un-ground char
particles.
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