Supporting Online Material

Nitrogen dynamics following field application of biochar in a temperate North American

maize-based production system

David Güereña¹, Johannes Lehmann¹*, Kelly Hanley¹, Akio Enders¹, Charles Hyland¹, Susan

 $Riha^2$

¹Department of Crop and Soil Sciences, Ithaca, NY 14853, Cornell University, USA

²Department of Earth and Atmospheric Sciences, Ithaca, NY 14853, Cornell University, USA

*Corresponding author, email: CL273@cornell.edu

Table S1 Biochar properties.

	units	
pH (water)		10.02
Potential CEC	(mmolc kg ⁻¹)	343
Total C	(mg g^{-1})	290
Total N	(mg g^{-1})	3.05
C/N		96
Total O	(%)	8.1
Total H	(%)	1.5
O/C ^a		0.15
H/C ^a		0.43
Total P ^b	(mg g^{-1})	0.41
Total Ca ^b	(mg g^{-1})	45.6
Total K ^b	(mg g^{-1})	275.2
Total Mg ^b	(mg g^{-1})	7.5
Total Na ^b	(mg g^{-1})	25.1
Extractable Ca ^c	(mmolc kg ⁻¹)	45.6
Extractable K ^c	(mmolc kg ⁻¹)	275.2
Extractable Mg ^c	(mmolc kg ⁻¹)	7.5
Extractable Na ^c	(mmolc kg ⁻¹)	25.1
Ash (ASTM ^d)	(%)	64.19
Fixed carbon (ASTM ^d)	(%)	10.12
Volatile matter (ASTM ^d)	(%)	71.74
Surface area (CO ₂)	$m^2 g^{-1}$	178
Size >4.76 mm	(%)	1.4
Size 4.76-2.00 mm	(%)	7.5
Size 2.00-0.42 mm	(%)	34.2
Size < 0.42 mm	(%)	56.9

^amolar ratios; ^bEnders and Lehmann (2012); ^cCEC Ammonium
Acetate at pH 7; ^dASTM D1762-84 Chemical Analysis of Wood Charcoal

References

Enders A, Lehmann J (2012) Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun Soil Sci Plan 7:1042-1052.

Fig. S1 Schematic of lysimeter placement and leachate collection device.

Fig. S2 Adsorption isotherm for DON with and without 12 t ha⁻¹ biochar taken in October 2009 (with 50% and 100% fertilization), three years after biochar additions in April 2007 (means; n=3).