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Due to its slow turnover rates in soil, pyrogenic carbon (PyC) is considered an important C pool and relevant to
climate change processes. Therefore, the amounts of soil PyCwere compared to environmental covariates over an
area of 327,757 km2 in the northeastern United States in order to understand the controls on PyC distribution
over large areas. Topsoil (defined as the soil A horizon, after removal of any organic horizons) samples were col-
lected at 165 field sites in a generalised random tessellation stratified design that corresponded to approximately
1 site per 1600 km2 and PyC was estimated from diffuse reflectance mid-infrared spectroscopy measurements
using a partial least-squares regression analysis in conjunction with a large database of PyC measurements
based on a solid-state 13C nuclear magnetic resonance spectroscopy technique. Three spatial models were ap-
plied to the data in order to relate critical environmental covariates to the changes in spatial density of PyC
over the landscape. Regional mean density estimates of PyC were 11.0 g kg−1 (0.84 Gg km−2) for Ordinary
Kriging, 25.8 g kg−1 (12.2 Gg km−2) for Multivariate Linear Regression, and 26.1 g kg−1 (12.4 Gg km−2) for
Bayesian RegressionKriging. Akaike Information Criterion (AIC) indicated that theMultivariate Linear Regression
model performed best (AIC = 842.6; n = 165) compared to Ordinary Kriging (AIC = 982.4) and Bayesian Re-
gression Kriging (AIC = 979.2). Soil PyC concentrations correlated well with total soil sulphur (P b 0.001; n =
165), plant tissue lignin (P = 0.003), and drainage class (P= 0.008). This suggests the opportunity of including
related environmental parameters in the spatial assessment of PyC in soils. Better estimates of the contribution of
PyC to the global carbon cycle will thus also require more accurate assessments of these covariates.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Climate change has triggered an increasing interest in biogeochem-
ical carbon (C) cycling and the question of how global change affects bi-
otic processes. Recent studies suggest that the biosphere currently acts
as a C sink (Schimel et al., 2001; Pan et al., 2011). However, the sink
strength may decrease over time, turning the biosphere into a C source
(IPCC, 2014). The largest uncertainty in predicting C turnover in the ter-
restrial biosphere is the soil (Tian et al., 2015), which stores at least
three times asmuch C as either the atmosphere or terrestrial vegetation
(Friedlingstein et al., 2006; Schmidt et al., 2011). Hence, soil organic C
(SOC) is the main component of the terrestrial C cycle and accounts
for annual carbon dioxide emissions that are an order of magnitude
higher than all anthropogenic carbon dioxide emissions taken together
adfield Hall, Ithaca, NY 14853,
(IPCC, 2014). Decomposition of SOC by microorganisms is likely to in-
tensify through global warming, augmenting the release of carbon diox-
ide into the atmosphere (Davidson and Janssens, 2006). If, however, a
larger fraction of SOC were to demonstrate slower decomposition
rates than currently assumed, the soil respiration-warming feedback
may have been over estimated and current models of global climate
change would need to be revised (Lehmann et al., 2008).

Slow-cycling SOC is either protected by minerals (organo-mineral
interactions, adsorbed OC, contained in aggregates) or chemically al-
tered with a highly aromatic structure and few oxygenated functional
groups (pyrogenic carbon), which makes it a less preferred energy
source for microbial decay (Preston and Schmidt, 2006; Schmidt et al.,
2011).

While the formation of stabilized plant residues may take a multi-
tude of pathways (Kleber et al., 2007), pyrogenic carbon (PyC) is pro-
duced by partial combustion of plant material and is a major
component of a continuum from charcoal to soot to graphite
(Kuhlbusch, 1998; Schmidt and Noack, 2000; Preston and Schmidt,
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2006). Although PyC can be degraded both chemically and biologically,
it decomposes at a slow rate, withmean residence time in soils estimat-
ed from decades to millennia (Lehmann et al., 2015;Wang et al., 2015).
Therefore, it mineralizes significantly slower than other litter input
(Ansley et al., 2006), providing a greater potential for PyC to act as a sig-
nificant C sink from the more rapid bio-atmospheric C cycle to the
slower (long term) geological C cycle (Forbes et al., 2006; Ohlson and
Tryterud, 2000). Skjemstad et al. (2002) found that PyC can constitute
a significant proportion of SOC with up to 35% in several long-term ex-
periments in the United States. Despite these findings of the importance
of PyC, most recent C-related studies focus merely on non-PyC compo-
nents and, therefore, neglect to address the long-term environmental
significance of PyC stock changes in the global C cycle. Additionally,
most available PyC data are collected as point data without attempting
to correlate these measurements to other environmental properties of
the surrounding landscape (Murage et al., 2007). Transformational pro-
cesses and products, initially driven by climate and geomorphology, de-
fine the landscape's natural potential which influences ecosystem
characteristics, for instance the capacity to act as a C sink or source
(Blümel, 2009). In order to quantify this potential and upscale point
measurements to the landscape scale, accurate information about the
spatial distribution of PyC in soils of different ecosystems and the rela-
tionship to other environmental parameters are important to support
projections of future climate change (Lehmann et al., 2008). Conse-
quently, so as to better understand the importance of PyC in the global
C cycle, an understanding of the spatial distribution of PyC is required
(Bird et al., 2015; Reisser et al., 2016; Santín et al., 2016). To date, studies
assessing spatial patterns of PyC in soils over large areas have been
scarce,may combine PyC estimates frommany different analyses proto-
cols (Reisser et al., 2016) and often only focus on soot-derived PyC
(Shaoda et al., 2011; Paroissien et al., 2012).

Therefore, the aim of this study was to assess the amount of PyC in
topsoils of the northeastern United States, to determine the importance
of related environmental parameters in the overall distribution of PyC
on a landscape scale and to evaluate the performance of different spatial
models in predicting PyC distribution over large areas. Specifically, the
suitability of Ordinary Kriging, Multivariate Linear Regression and
Bayesian Regression Kriging was examined with the goal to obtain the
best model to depict and quantify spatial patterns of PyC distribution
in the landscape.

2. Materials and methods

2.1. Study region

The sample sites are located in the northeastern United States, a part
of the humid temperate zone, which globally covers 9.7% of the global
terrestrial landmass. Mean annual temperature ranges from 8 °C to
12 °C andmean annual precipitation from600mmto 1000mm. Rainfall
is broadly distributed throughout the year. Temperate broadleaf and
mixed forests comprise the predominant natural vegetation type. The
organic layer consists of slightly acidic to slightly alkaline mull, which
is rich in nutrients and carbon compared to the underlying mineral ho-
rizons. Both climate and vegetation control soil formation in this
ecoregion and primarily lead to the development of dystric to eutric
Cambisols, Luvisols and Podzoluvisols (Goudie, 2001; Woodward,
2003).

2.2. Sample collection and analysis

A composite of the soil A horizon (ca. 1 kg of the uppermost mineral
soil, up to 0.1m depth for the study region, after removal of the organic
horizon if present) was collected using either soil profiles or augers at
165 sample sites in the six New England States and New York State
(Supplementary Fig. S1) as part of the U.S. Geological Survey's North
American Soil Geochemical Landscapes Project (Smith et al., 2012,
2013, 2014). No additional field information was collected at the time
of soil sampling. Additional soil and site information was obtained
from other databases (Supplementary Tables S1 and S2). Field sites
were selected using a generalised random tessellation stratified design
that corresponded to approximately 1 site per 1600 km2 (Stevens and
Olsen, 2004). This is a low sampling intensity compared to the processes
that are likely responsible for soil PyC distribution, but is a typical sam-
pling density available for large-scale spatial analyses of soils (e.g., for
Africa 1 site per 1122 km2, Hengl et al., 2015; for Europe 1 site per
199 km2, Ballabio et al., 2016). Our analyses therefore reflect assess-
ments of PyC spatial distribution, the ability to understand its drivers
and the opportunities to improve spatial interpolation using co-variates
for a data density typical of soil inventories.

The samples were air-dried, disaggregated and sieved to b2 mm.
This material was then finely ground prior to chemical analysis (Smith
et al., 2013). Adapting themethod of Briggs (2002), a USGS contract lab-
oratory determined total sulphur (S) concentration by a near-total four-
acid (hydrochloric, nitric, hydrofluoric, and perchloric) digestion at a
temperature between 125 and 150 °C followed by inductively coupled
plasma–atomic emission spectrometry (ICP-OES Optima 5300/7300,
Perkin Elmer Inc., Waltham, MA, USA).

A chemometric prediction method was used to estimate PyC con-
tents whereby mid-infrared (MIR) spectra were correlated with large
dataset of lab-produced PyC quantification from soils in Australia
(Baldock et al., 2013a, 2013b). Finely ground and homogenized samples
(Retsch Ball Mill, MM400, Haan, Germany) were analyzed by diffuse re-
flectanceMIR spectroscopy using the identical spectroscope for theAus-
tralian calibration set and the US soils presented in this study. Spectra
between 8000 and 400 cm−1 were recorded with a Nicolet 6700 FTIR
spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA)
equipped with a KBr beam-splitter, a DTGS detector and an AutoDiff-
Automated diffuse reflectance accessory (Pike Technologies, Madison,
WI, USA). Subsequent partial least squares (PLS) regression analysis of
PyC was carried out with the Unscrambler 10.2 software package
(CAMO software AS, Oslo, Norway). In this, a standard set of 312 Austra-
lian soils, previously analyzed for PyC using HF treatment followed by
solid-state 13C nuclearmagnetic resonance (NMR) spectroscopy, served
as PLS calibration data. Test set validation indicated a root mean square
error of 0.324mg C g−1 with an R-square of 0.85 (Baldock et al., 2013b).

An outlier ratio based on Hotelling's T-squared distribution and an
inlier ratio based on the Mahalanobis distance derived using the Un-
scrambler 10.2 software (CAMO Software AS, Oslo, Norway) were ap-
plied to determine how closely our field site PyC data in the US north-
east aligned with the range of data used in the PLS calibration data set
from Australia. Under the similarity assumptions associated with the
PLS model fit to the calibration data, no more than about 5% of the cali-
bration samples should be expected to lie beyond the threshold for each
metric (i.e. having a ratio N 1). For the soils being predicted in this study,
approximately 58% were found to be beyond the Hotelling's critical
value for the outlier ratio and 8% beyond the Mahalanobis critical
value for the inlier ratio (Fig. 1), thus providing a measure of distance
between our data and the data used for the calibration. Consequently,
58% of our data lie beyond the current predictive range of this model
and prudence should be exercised in interpreting the results. One
possibility would be to down-weight the elements of the data that are
statistically beyond the base calibration data set. This might be
appropriate if the variables used for the prediction were scattered
more or less randomly outside of its range. However, this is a spatial
prediction, so sites with characteristics that lie beyond those of
the calibration data are in fact aggregated in specific regions.
Thus down-weighting or eliminating these data would leave gaps in
the prediction. Even so the predicted means are not likely to change
from those presented here, although their variance increases. Conse-
quently, for our purposes of relating PyC contents to each other and to
site variables, we assume that the established linear relationship is
appropriate.



Fig. 1. Scatterplot outlier vs inlier ratio of PyC measurements (n= 165). Both metrics are calculated using the Unscrambler. The outlier ratio is based on Hotellings T-value and the inlier
ratio is based on Mahalanobis distance. Horizontal and vertical lines at 1.0 are provided for reference.
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2.3. Statistical analysis

Additional environmental datawere assembled to further character-
ize the region, to inform the modelling approach for better spatial pre-
diction of PyC and to identify possible drivers of regional distribution
of PyC in soil, including parameters possibly responsible for PyC input
(e.g., biomass, plant tissue lignin, soil S) and disappearance (e.g., soil
drainage, slope gradient, aspect, mean annual temperature,mean annu-
al precipitation, combined silt and clay content). All parameters and
their sources listed in Supplementary Table S1.

Although additional correlations of PyC can in some cases be found
(Jauss et al., 2015), this study focused on those predictors for which a
functional relationship can be hypothesized and data accessed.
Amounts of PyC may be positively correlated to SOC (Glaser and
Amelung, 2003; Jauss et al., 2015), as PyC is part of the SOC pool. How-
ever, physical drivers that lead to accumulation of PyC and SOC in soils
are for the most part unrelated. Therefore, any correlation between
PyC and SOC is spurious and PyC concentrations in the soil are highly
variable with regard to total soil C contents (Janik et al., 2007). Conse-
quently, we did not include SOC as a potential predictor variable.

Properties for the topsoil (0–0.1 m) of the entire region such as soil
drainage and bulk density were derived from the STATSGO database
(Soil Survey Staff, Natural Resources Conservation Service, United
States Department of Agriculture, 2006). Data for the existing vegeta-
tion were obtained from The National Map LANDFIRE (2006). For com-
plete list of sources, see Supplementary Table S1. For neither database
were uncertainty estimates available. In addition to obtaining data
layers for the entire region, specific values for the study sites were ex-
tracted using the Intersect Point Tool in Hawth's Tools (Beyer, 2004)
in ArcGIS 9.3 (ESRI, 2009). The data for vegetation taken from The
NationalMap LANDFIRE (2006)were not used directly. Instead, through
a literature review continuous Klason lignin values were obtained,
which are derived from ground biomass constituent insoluble in 72%
sulphuric acid (Klason, 1908), and thus these lignin values were
assigned to the categorical Vegetation Group values (Pickering, 2008;
Rowell, 2005; Corker and Boyer, 1975; Pettersen, 1984; Ostrofsky,
1997; Wenzl, 1970; Brauns and Brauns, 1960; Park and Kim, 2012;
Wayne Cook and Harris, 1952; Wilson, 1985; Bray et al., 2012; Sharpe
et al., 1980; Severson and Ursek, 1988; Lamoot, 2004; Butkuté et al.,
2013; Conn, 1994; Wainio and Forbes, 1941; Smith and Kadlec, 1984;
Laursen, 2004; Abideen et al., 2011; van Niekerk et al., 2004; Sultan et
al., 2009; Fukushima and Hatfield, 2004). These data were used for the
linear regression analysis. For the final map predictions, lignin values
were determined for all Vegetation Group values in the raster layer, in-
cluding those not represented at the sample locations, and the entire
dataset was used.

A Bayesian hierarchical model was used to explore three alternative
methods for predicting the landscape-scale distribution of PyC in the
soil, and implemented on a common modelling platform described
below, rather than using commercially available statistical software.
The three alternative approacheswere: 1. Ordinary Kriging; 2.Multivar-
iate Linear Regression with independent error; and 3. Bayesian Regres-
sion Kriging with a linear model and autocorrelated error. The three
alternative approaches can be represented by a single model formula-
tion:

Y ¼ X0βþ ε ε∼MVN 0;Σð Þ ð1Þ

where Y represents the vector of observations on PyC, X the predictor
variables, β is the vector of associated coefficients, and ε is the vector
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of possibly spatially autocorrelated errors following a multivariate nor-
mal probability distributionwith amean vector of zeros 0 and variance-
covariance matrix Σ which itself is a function of the pairwise distances
between points using a spherical covariogram model and parameter-
ized with the parameters Θ representing the range, partial sill and tau
(global precision). It is common in the classical geostatistical literature
to find the variogramdefined in terms of the sill (global variation), nug-
get (small scale variation) and range (distance over which spatial corre-
lation is occurring). Here we define the variogram in more modern
terms of the tau (precision that is the square root of the inverse of the
global variance), the partial sill (sill-nugget) and the range. The latter
three are used to facilitate optimal estimation. Precision, for example,
is often amore stable estimator than variance. Regression parameter es-
timates were considered significant at P b 0.05.

Considering the model more broadly, three different variations can
be made out in our model, depending on data input to Eq. (1). When
β is simply a vector of ones, the model represents the ordinary kriging
model. The multivariate linear model results when Σ is a diagonal ma-
trix of variances only. Lastly, the regression kriging model is obtained
when both the multivariate linear component and the spatially
autocorrelated variance-covariance matrix are implemented. All three
models were run on the same platform for improved consistency
using JAGS (Plummer, 2003) with the rjags package within R (R Core
Team, 2013), while model comparisons were made using AIC (Akaike,
1973). A Bayesian hierarchical approach was implemented to allow
for the simultaneous estimation of both the regression model parame-
ters and the spatial autocorrelation parameters used to characterize
the covariance matrix. Diffuse priors were used on the parameters fol-
lowing the recommendations of Gelman (2006) and Gelman et al.
(2014). The approach therefore allowed development of a unified
method for representing and comparing results from the three different
models. Furthermore, it prevented the fitting procedure from incorrect-
ly estimating the coefficients under assumptions of independently and
identically distributed error, and subsequently using the results to cal-
culate the variogram parameters that are structuring the variance-co-
variance relationship thus assuming correlation.

Finally, prediction and localized kriging using the parameters previ-
ously estimated by the three different model variations on a common
JAGS platform were made through application of the Spatial Analyst
tools and Raster Calculator in ArcGIS 10.1 (ESRI, 2011). The use of this
platform and thismodelling approach is unique in how it simultaneous-
ly estimates trend and covariation.

3. Results

3.1. PyC contents

Predictions of PyC contents and stocks in the New York State and
New England area varied considerably between the different models
used to generate these estimates (Table 1). For instance, the Ordinary
Kriging model showed PyC contents spanning 10.3 g kg−1 with a
mean of 11.0 g kg−1, whereas the range of PyC was much larger for
the Multivariate Linear Regression model (spanning 46.8 g kg−1;
mean 25.8 g kg−1) and the Bayesian Regression Kriging model (span-
ning 46.7 g kg−1; mean 26.1 g kg−1), respectively. In terms of spatial
distribution (Fig. 2), all three models assessed PyC contents between
Table 1
Global estimates of PyC contents [g kg−1 soil] and in parentheses PyC stocksa [Gg km−2].

Model Mean St

Ordinary kriging 11.00 (0.84) 2.
Multivariate Linear Regression 25.76 (12.23) 13
Bayesian Regression Kriging 26.09 (12.39) 13

a Stocks were calculated using the following formula: PyC Stocks [Gg km−2] = PyC concentr
the precision of the data).
8.0 and 11.0 g kg−1 to cover more than half of the New York State and
New England area (Ordinary Kriging: 54.3%; Multivariate Linear
Regression: 60.6%; Bayesian Regression Kriging: 62.9%). Yet, the
maximum values of the Ordinary Kriging model (13.0–16.1 g kg−1 for
4.5% of the total area) diverged considerably from the other twomodels
(22.0–49.2 g kg−1 for 0.4% of the total area; 22.0–49.4 g kg−1 for 0.5% of
the total area). These differences became even more pronounced for
PyC stocks (Table 1; Fig. 3).

3.2. Regression analysis with environmental predictors

Multivariate analysis was applied to a number of different predictor
variables of which total soil S, plant tissue lignin and soil drainage (Fig.
4) were found to be the only ones to show a statistically significant
relationship (P b 0.01). However, in the context of our study we found
topographic variables such as slope gradient (P = 0.197) and aspect
(P = 0.238), climate factors such as mean annual temperature (P =
0.470) and mean annual precipitation (P= 0.572) as well as combined
silt and clay content (P = 0.475) not to be statistically significant.

3.3. PyC mapping using three different models

The two models that included linear predictors (Multivariate Linear
Regression: Bayesian Regression Kriging) performed better than the
geostatistical model based on PyC observations alone (Ordinary
Kriging) as seen from their AIC (Table 2).While theparameter estimates
associated with the spatial autocorrelation component all significantly
differed from zero, when comparisons among models are made using
AIC we found that the two regression-based models do not appreciably
differ from one another (Δ AIC ~ 3). This indicates that the spatial corre-
lation between observations is low enough to not have had much prac-
tical influence on the predictions. Table 2 and Figs. 5 and 6 demonstrate
the statistical and practical influence of the three included covariates on
the spatial prediction of PyC. The linear trends and 95% Bayesian credi-
ble intervals shown in thesefigures represent the results from the appli-
cation of the Bayesian Regression Kriging model. The comparable
Multivariate Linear Regression results are so similar to the ones from
the Bayesian Regression Kriging model that only one set of figures is
shown in Fig. 5. Two leverage points can be seen to influence the rela-
tionship between PyC and S, but the overall positive relationship is
still strongly evident (Fig. 5a). The relationship between PyC and lignin
is also positive and significant, however more subtle in its effect (Fig.
5b). Of the drainage conditions, only very poorly drained soils show a
statistically significantly higher amount of PyC than the average
shown by other soil drainage types (Fig. 5c), representing nearly a dou-
bling in the amount of PyC present, conditioned on S and lignin content
remaining constant in the system. The interaction of S and drainagewas
not significant (P N 0.05).

4. Discussion

4.1. PyC accumulation in topsoils

The spatial variability of PyC in the studied mineral topsoils most
likely stems in part from its different sources of both vegetation fires
and fossil fuel emissions. Parshall and Foster (2002) have shown
andard deviation Minimum Maximum

98 (0.29) 5.80 (0.00) 16.10 (1.56)
.48 (7.43) 2.42 (0.00) 49.20 (40.54)
.45 (7.50) 2.80 (0.00) 49.49 (40.78)

ation [g kg−1 soil] ∗ Bulk Density [Mg m−3] ∗ Layer Thickness [m] (stocks reported within



Fig. 2. PyC content [g kg−1 soil] assessment for New York and New England: a) Ordinary
Kriging; b) Multivariate Linear Regression; c) Bayesian Regression Kriging.

Fig. 3. PyC Stocks [Gg km−2] for topsoils in New York and New England: a) Ordinary
Kriging; b) Multivariate Linear Regression; c) Bayesian Regression Kriging.
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Fig. 4. Environmental predictors used in Multivariate Linear Regression and Bayesian
Regression Models: a) Ordinary Kriging of total soil sulphur measurements from 165
field sites; b) Plant tissue lignin contents according to existing vegetation type (The
National Map LANDFIRE, 2006); c) Soil drainage classes for topsoil (Soil Survey Staff,
Natural Resources Conservation Service, United States Department of Agriculture, 2006).
Areas in white represent missing data, principally water bodies and major cities.

Table 2
Parameter estimates for three Bayesian models.

Ordinary Kriging Multivariate
Linear
Regression

Bayesian
Regression
Kriging

Value SE Value SE Value SE

Intercept 9.183 0.671 3.344 0.985 3.477 0.933
Soil sulphur 6.050 0.489 6.150 0.440
Plant lignin 0.008 0.003 0.007 0.003
Soil drainage

Somewhat excessively
drained

−0.920 1.313 -0.673 1.214

Well drained 1.914 0.103 0.173 0.960
Moderately well drained 1.622 1.261 1.662 1.115
Somewhat poorly
drained

1.560 1.218 1.901 1.148

Poorly drained 1.825 1.158 1.661 1.089
Very poorly drained 7.683 2.653 7.535 2.631

Range 132,027 26,004 163,072 26,150
PSill 8.989 4.196 1.616 0.990
Tau 0.044 0.007 0.084 0.011 0.094 0.012
AIC 982.4 842.6 979.2
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through charcoal records in lake sediments of the study region that fire
has been a notable environmental factor pre- but evenmore so post-Eu-
ropean settlement. Pre-settlement fire history wasmostly driven by cli-
mate, vegetation and local physiographic characteristics, with fires less
common in areas dominated by hemlock and northern hardwood for-
est, but at the same time abundant in areas with pitch pine stands on
sandy, dry deposits of glacial outwash. European arrival and settlement
in New England and New York State brought extensive changes to veg-
etation structure and composition through the initiation of burning
practices (Foster and Zebryk, 1993; Davis et al., 1998; Parshall and
Foster, 2002). This brought on a substantial rise of charcoal contents in
lake sediments throughout the entire area (Parshall and Foster, 2002)
and, presumably, also in parts a localized PyC accumulation in soils. It
should be noted that pre-settlement forests were not untouched by
humans; for instance, indigenous populations in New England periodi-
cally cleared the undergrowth with fire to facilitate hunting and travel
(Russell, 1983). In the last century, industrial development led to re-
gionally variable emission and atmospheric transport of fossil fuel-de-
rived C, consequently contributing markedly to PyC deposition in
certain areas (Driscoll et al., 2001).
4.2. PyC relationships with environmental predictors

As biomass undergoes initial thermal degradation during wildfires,
organic molecules release S from primary binding sites. Subsequently,
during high temperature thermochemical conversion reduced organic
S may be retained and bonded to unsaturated C functional groups in
the PyC matrix (Knudsen et al., 2004; Cheah et al., 2014). These C-S
functional groups may allow for this form of reduced S bound to PyC
to be preserved in the topsoil for a much longer period of time (Puri
and Hazra, 1971) than is possible once organic S is fully oxidized by py-
rolysis to SO4 and subsequently leached from the soil as has been ob-
served elsewhere (Blum et al., 2013; Knudsen et al., 2004). This
mechanism might explain the association of PyC and S in our soils.

Moreover, through prevailingwinds fromwest to east, pollutants in-
cluding soot are emitted in the highly industrialized regions of theMid-
west and deposited in the New York State and New England area. It is,
therefore, conceivable that atmospheric deposition of PyC aerosols and
S has led to their joint accumulation in soils of the northeastern United
States. Management actions controlling SO2 emissions such as the
amendments to the Clean Air Act in the United States resulted in de-
creases in both emissions and depositions of acidic compounds over
the past decades (Driscoll et al., 2001). Because of these measures,
along with regular tillage, agricultural soils do not show much change
in topsoil S over the past century, althoughhigher levels of subsoil S sug-
gest that S deposited by acid rain has migrated deeper by bioturbation
or SO4 leaching (Zhuang and McBride, 2013). However, the accumula-
tion effects of decades of atmospheric S deposition remain evident in
forest soils where previously retained S is only gradually exported
(Driscoll et al., 2001). Hence, elevated levels of both PyC and S are
found in heavily forested regions such as the Adirondacks in northern
New York State, the Catskills in central New York State and the White
Mountains in New Hampshire and western Maine (Figs. 2 and 4). Due
to large leaf and needle surfaces, forests amplify the impact of dry and
wet deposition. Pollutants are intercepted and filtered from both air
and precipitation before they enter the soil through canopy drip or
stemflow. Thus, input loads in forests can exceed deposition on open
surfaces by a considerable amount (Blümel, 1986).



Fig. 5. (a) Relationship between PyC and total soil sulphur with median line and 95% Bayesian Credible Interval (BCI) from MCMC. (b) Relationship between PyC and plant tissue lignin
with median line and 95% Bayesian Credible Interval (BCI) from MCMC. (c) Boxplot of soil drainage classes (VPD = very poorly drained, PD = poorly drained, SPD = somewhat poorly
drained, MWD= moderately well drained, WD =well drained, SED = somewhat excessively drained, ED= excessively drained) and PyC median and 95% Bayesian Credible Intervals
(BCI) from MCMC.
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It remains a question, however, whether fossil-fuel or vegetation-
fire derived PyC and S input dominate the soil contents, given that on
the one hand S contents are greater in fossil fuels than biomass
(Cordero et al., 2004), whereas on the other hand only 25–30% of PyC
Fig. 6. Semivariogram (i.e., sill minus covariogram) fit to PyC for Ordinary Kriging and to the sim
size represents the pairwise sample size for spatial correlation between Ordinary Kriging and B
originates from fossil fuels on a national or global level compared to
PyC fromvegetation fires (Van DerWerf et al., 2010). Additionally, fossil
fuel PyC consists mostly of soot and therefore travels large distances
(Duffin et al., 2008; Jurado et al., 2008), whereas PyC from vegetation
ultaneously estimated residuals from the fit to PyC for Bayesian Regression Kriging. Circle
ayesian Regression Kriging.
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fires encompasses a continuum from charcoal to soot (Preston and
Schmidt, 2006) with larger particle sizes making up the vast majority
(Kuhlbusch et al., 1996; Saiz et al., 2014). Therefore, most PyC from veg-
etation fires initially remains close to the site of production (Bird et al.,
2015) but is subsequently susceptible to erosion and illuviation
(Rumpel et al., 2006; Major et al., 2010; Guereña et al., 2015).

As the influence of fire on individual plant species varies greatly
(Heyerdahl et al., 2001), not only the quantity but also the nature of
the burnt biomass affects the amount of PyC being produced. Plants
with high lignin content produce particularly high proportions of aro-
matic products duringfire and yieldmore PyC than is obtained from cel-
lulose (Knicker, 2007). Furthermore, thermal degradation of lignin-rich
plant material produces less tar, lowering the flammability and thereby
favouring subsequent pyrolysis over combustion (Browne, 1958). Con-
versely, biomass that is low in lignin has higher combustion intensity
and therefore yields less PyC compared to lignin-rich biomass when
fuel loads are similar (Czimczik et al., 2003; Forbes et al., 2006),
explaining our results that higher soil PyC contents were observed
where the vegetation had greater proportions of lignin.

Soil drainage proves to be a significant factor in PyC accumulation in
soils. In our case, very poorly drained soils show a statistically signifi-
cantly higher amount of PyC (Figs. 2b, c and 4c), which can be explained
by abiotic oxidation and biotic mineralization being reduced due to wa-
terlogged conditions (Nguyen and Lehmann, 2009). Additionally, wet-
ter conditions might decrease PyC combustion by subsequent burning
events, furthering its accumulation (Glaser and Amelung, 2003).

Questions often arise as to why one study might find key predictors
of change, such as topographic characteristics or climate, to be statisti-
cally significant in defining a modelled response, while another study
may not. The answer lies in part in understanding the influence that
the observed range of each predictor will have on the calculation of
the significance metrics. If the range of the predictor is so narrow as
not to create enough contrast to encumber a change in a response var-
iable, such as PyC, then the predictor variable will not appear to be sta-
tistically significant. The predictor may actually be an important driver
of processes guiding levels of the response, but if the predictor itself
does not vary substantially over the region being assessed, then this im-
portance will go unnoticed. In our case, over 80% of the observations on
slope gradientwere between 0 and 10 units. Similarly, the combined silt
and clay observationsmostly aggregated in the 30s or in the high 60s to
low 70s percent range. This is most likely insufficient to detect change.
Hence, while predictors like slope gradient, texture or MAT, as sug-
gested by other studies (Paroissien et al., 2012), might have been rele-
vant to the overall processes involved in production and deposition of
PyC, we were not able to discern a statistically significant effect because
of the low contrast in the range of these potential predictors for our
study region. The predictor variables were directly obtained from re-
gional data archives, and thus represent the actual range of the data
over this region. Therefore, the lack of a statistically significant effect
of a particular predictor reflects more its predictive influence on the
studied regional scale rather than what might be occurring locally. In
addition, analyses of other regions or at a larger scale may identify dif-
ferent predictors.

4.3. PyC mapping using three different models

Including auxiliary information of environmental variables improves
the resolution of predictions over an area (McBratney et al., 2003). The
challenge with using auxiliary information is retrieving these data and
accounting for potential autocorrelation in the residuals of any linear re-
gression that is applied. In this paper, we used a Bayesian framework
that allowed us to simultaneously calculate the regression parameters
and the spatial autocorrelation variogram parameters. This computa-
tional approach avoids inappropriately weighting the estimates by fail-
ing to account for spatial autocorrelation in the data, and obviates
increasing sample spacing for sake of better predictions. We found
that the USGS field sites were located far enough apart so that any spa-
tial relationship that might exist on a local scale did not appear to influ-
ence the linear fits (Fig. 6). However, such relationships might become
more important when data are clustered or characterizations of local
dynamics are of greater interest. We used kriged estimates of soil S,
plant lignin and soil drainage to establish the input covariates for spatial
prediction. These covariates were treated as known, and although they
are likely to contain some uncertainties, we disregarded that level of
variation in this work for practical (as uncertainty estimates were not
available from the source data) and computational reasons. However,
a Bayesian framework such as the one we developed for the purpose
of this paper could be used hierarchically to include this variation as
well, if variances were properly characterized in the source data.

Assuming the auxiliary information input is fairly accurate we can
visualize the higher level of resolution that this provides in themapped
predictions. The strong relationship between PyC and S was clearly ev-
ident. High concentrations of predicted PyC in southern Maine
(~46.6 g kg−1 soil) coincide with high levels of S (~4.9 g kg−1 soil)
(Figs. 2 and 4). This provides some indication that PyC levels might be
higher here than what sample observations alone in this area would in-
dicate. A second example is the Adirondacks regionwhere a single glob-
al high is evident in the Ordinary Kriging predictions, but more detail in
the predictions can be seen once auxiliary information is included.

Estimates for the entire dataset confirmed that considering auxiliary
information made a difference to the estimates of the spatial distribu-
tion of PyC. Mean estimates that took auxiliary information into account
were more than two times greater than mean estimates that did not
(Table 1). Furthermore, the variation as exemplified by the range and
the standard deviation of the predictions more accurately reflected the
span of PyC over the region, all based on regressions with themeasured
point estimates (Supplementary Fig. S1). The Bayesian hierarchical
model that was used to estimate the regression relationships while si-
multaneously accounting for the spatial autocorrelation better accounts
for the multivariate and nonlinear associations in the system when
making landscape scale predictions and we therefore encourage the
use of these more statistically sophisticated approaches in the future.
Furthermore, uncertainty in database-derived metrics could be readily
incorporated through the Bayesian hierarchical approach.
5. Conclusions

In summary, PyC contents in mineral topsoils (A horizon, after re-
moval of any organic horizons) of the northeastern United States were
closely associated with factors controlling its production (plant lignin),
formation process (total soil S) and accumulation or movement (soil
drainage). These environmental covariates proved useful for parame-
terizing spatial models of PyC distributionwith otherwise limited direct
observations of only one site per 1600 km2. Therefore, these models
performed significantly better than a model based on PyC point obser-
vations alone. Global biogeochemical C budgets rely on accurate assess-
ments of C reserves in soils, and its cycles on understanding SOC
vulnerability to mineralization. To achieve this, measurements across
a continental scale will be helpful in establishing purposive relation-
ships to critical covariates in order to better enhance estimates under
what will always be limitations in direct soil sampling. More appropri-
ate statistical modelling techniques as well as taking advantage of spa-
tially covarying sets of observations might also help improve
predictions. It is important to find enough contrast in the set of the en-
vironmental covariates for them to be statistically significant in making
predictions on the response variable PyC. Future researchmay also ben-
efit from identifying the possibly varied sources of PyC and S using iso-
tope techniques. Moreover, understanding the speciation of S could aid
in furthering our understanding of biogeochemical mechanisms linking
S to PyC in soils. Future spatial analyses of other regions or different spa-
tial scales should use the current Bayesian hierarchical approach of
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spatialmodelling, and examine the entire set of possible predictors even
if they were not significantly related to PyC in our study.
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