
Introduction to Correlation and Regression

D G Rossiter

February 17, 2016

Copyright © 2007–2012, 2015-16 D G Rossiter
All rights reserved. Reproduction and dissemination of the work as a whole (not parts) freely permitted if this original
copyright notice is included. Sale or placement on a web site where payment must be made to access this document is strictly
prohibited. To adapt or translate please contact the author (dgr2@cornell.edu).

dgr2@cornell.edu


Correlation, Regression, etc. 1

Topics

1. Correlation

2. Simple linear regression

3. Model validation

4. Structural analysis

5. Multiple linear regression

6. Regression trees and random forests

7. Factor analysis (Principal Components Analysis)

8. Robust methods

D G Rossiter
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Computing environment

Output produced by R; see http://www.r-project.org

D G Rossiter
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Topic: Relations between variables

Given a dataset which contains:

� sampling units (“records”, “individuals”)

� items measured on each sampling unit (“variables”)

What is the “relation” between the variables?

� Association: what?

� Explanation: why?

� Causation: how?

� Prediction: what if?

D G Rossiter
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Types of relations between variables

1. Variables are of equal status

(a) A bivariate correlation between two variables;
(b) A multivariate correlation between several variables;
(c) A structural relation between two variables;
(d) A structural relation between several variables (e.g. principal components).

2. Variables have different status

(a) A simple regression of one dependent variable on one independent variable;
(b) A multiple regression of one dependent variable on several independent

variable.
(c) A hierachical model (tree) relating a dependent variable to several independent

variables.

D G Rossiter
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Regression

This is a general term for modelling one or more:

� response variables (predictands, mathematically dependent), from one or more

� predictor variables (mathematically independent)

Note: The “response” and “predictor” are mathematical terms, not necessarily “effect”
and“cause”– that requires meta-statistical reasoning.

D G Rossiter
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Linear models

� All variables are related with linear equations.

� These are easy to work with and have good mathematical properties.

� Their interpretation is easy (proportional relations).

� The linear relation can be after transformation of one or more variables, to linearize
the relation.

� Relations that can not be linearized are intrinsically non-linear.

D G Rossiter
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Is the relation linear?

Reference: Anscombe, F. J. Graphs in Statistical Analysis. American Statistician 27,
17-21, 1973

Four different bivariate datasets, all with the exact:

� same correlation coefficient r = 0.81;

� same linear regression equation y = 3+ 0.5x

Quantitatively: identical correlation and regression

Qualitatively: very different interpretations

D G Rossiter
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Anscombe’s quartet
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Interpretation

1. noisy linear

2. perfect quadratic

3. perfect linear, one outlier (observation not fitting the pattern)

4. ?? one point is controlling the relation, no way of knowing:

(a) variability at that value of the predictor
(b) intermediate points

D G Rossiter
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Topic: Correlation

� Measures the strength of association between two variables measured on the same
object:

* −1 (perfect negative correlation)
* 0 (no correlation)
* +1 (perfect positive correlation).

� The two variables have logically equal status

� No concept of causation

� No functional relation, no way to predict

D G Rossiter



Correlation, Regression, etc. 11

Example dataset

Source: W B Mercer and A D Hall. The experimental error of field trials. The Journal of
Agricultural Science (Cambridge), 4: 107–132, 1911.

� A uniformity trial: 500 supposedly identical plots within one field

� All planted to one variety of wheat and treated identically

� Measured variables: grain and straw yields, lbs per plot, precision of 0.01 lb
(0.00454 kg)

D G Rossiter
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Bivariate scatterplot
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What kind of relation between the two variables?

1. Variables are of equal status

(a) A bivariate linear correlation between the two variables (straw and grain yields);
(b) A linear structural relation between the two yields.

2. Variables have different status

(a) A univariate linear regression of straw (dependent) on grain (independent) yield;
(b) A univariate linear regression of grain (dependent) on straw (independent) yield.

We begin with linear correlation.

D G Rossiter
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Measuring correlation

1. Parametric:

� Assumes some bivariate distribution
� e.g. Pearson’s product moment correlation coefficient (PMCC) r ;

2. Nonparametric

� Uses ranks, not distributions
� e.g. Spearman’s ρ.

D G Rossiter
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Measuring the strength of a bivariate relation

� The theoretical covariance of two variables X and Y

Cov(X, Y) = E{(X − µX)(Y − µY)}
= σXY

� The theoretical correlation coefficient: covariance normalized by population
standard deviations; range [−1 . . .1]:

ρXY = Cov(XY)
σX · σY

= σXY
σX · σY

D G Rossiter
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Sample vs. population covariance and correlation

� Sample x = 1/n
∑
xi estimates population µX

� Sample sx =
√

1
n−1

∑
(xi − x)2 estimates population σX

� Sample sxy = 1
n−1

∑
i=1(xi − x) · (yi −y) estimates population σXY

� Sample rxy = sxy
sx·sy estimates population ρXY

D G Rossiter
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Covariance vs. correlation

Covariance: in original units, original scale:

E.g. mean grain, straw yields in lbs per plot, and their covariance in (lbs per plot)2

[1] "means: Grain: 3.949 ; Straw: 6.515"

[1] "standard deviations: Grain: 0.458 ; Straw: 0.898"

[1] "Covariance: 0.3004"

Correlation: standardized to a (−1 . . .+ 1) scale:

Both variables: subtract mean and divide by standard deviation:

[1] "Correlation: 0.7298"

D G Rossiter
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Assumptions for parametric correlation

Requires bivariate normality; do these two variables meet that?

If the assumption isn’t met, must use either:

� transformations to bivariate normality (may be impossible), or

� ranks (see below)

D G Rossiter
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Clear violation of assumptions

One point can arbitrarily change the correlation coefficient Example: 3 uncorrelated
random samples (theoretical ρ = 0), without/with one contaminating observation:
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Visualizing bivariate normality

To visualize whether a particular sample meets the assumption:

1. Draw random samples that in theory could have been observed from samples of the
same size, if the data are from the theoretical bivariate normal distribution required
for PPMC. This is simulating a sample from known (assumed) population.

Note: R functions for simulating samples:

� rnorm (univariate normal);
� mvrnorm from the MASS package (multivariate normal)

2. Display them next to the actual sample:

(a) univariate: histograms, Q-Q plots
(b) bivariate: scatterplots

They should have the same form.

D G Rossiter
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Histograms – simulated vs. actual

Do the single variables each appear to be normally-distributed?
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Scatterplots – simulated vs. actual

Do the two variables together appear to be normally-distributed?
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Values vs. ranks

Non-parametric methods compute the parametric coefficient on ranks:

Lowest-yielding grain and straw plots:

[1] 338 467 470 339 336 441 149 319 81 228 164 273

[1] 470 467 441 447 427 284 444 460 81 401 338 469

Some plots with their ranks and yields:

grain straw rank(mhw$grain) rank(mhw$straw)

1 3.63 6.37 123.0 254.5

2 4.07 6.24 299.0 219.5

3 4.51 7.05 445.5 356.5

4 3.90 6.91 228.0 329.0

5 3.63 5.93 123.0 136.0

6 3.16 5.59 23.5 70.5

7 3.18 5.32 26.0 36.0

8 3.42 5.52 62.5 59.0

D G Rossiter
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Scatterplots: values and ranks
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Ranks always lose information but are distribution-free.

So, non-parametric correlations are usually lower (less powerful) – if the assumptions are
met!
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Correlation coefficients

Both computed with R function cor:

[1] "Parametric (PPMC), using method='pearson' 0.7298"

[1] "Non-parametric (Spearman), using method='spearman' 0.7196"

Can compute a confidence interval for the parametric coefficient (R function
cor.test)

Pearson's product-moment correlation

data: mhw$grain and mhw$straw

t = 23.821, df = 498, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.68599 0.76830

sample estimates:

cor

0.72978

D G Rossiter
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Topic: Simple Linear Regression

Recall: regression is a general term for modelling one or more:

� response variables (predictands), from one or more

� predictor variables

The simplest case is simple linear regression:

1. One continous predictor

2. One continous predictand

D G Rossiter
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Fixed effects model

Yi = BXi + εi

All error ε is associated with the predictand Yi

There is no error in the predictors Xi, either because:

� imposed by researcher without appreciable error (e.g. treatments);

� measured without appreciable error;

� ignored to get “best” prediction of Y .

The coefficients B are chosen to minimize the error in the predictand Y .

Simplest case: a line: slope β1, intercept β0:

yi = β0 + β1xi + εi

D G Rossiter
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Fixed effects line

Source: Webster, European Journal of Soil Science 48:558 (1997), Fig. 2
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Least-squares solution

Two parameters must be estimated from the data:

The slope β̂Y .x is estimated from the sample covariance sXY and variances of the
predictand s2

x:

� β̂Y .x = sXY/s2
x

The intercept α̂Y .x is then adjusted to make the line go through the centroid (x̄, ȳ):

� α̂Y .x = ȳ − β̂Y .xx̄

Note: only s2
x is used to compute the slope! It is a one-way relation, because all the error

is assumed to be in the predictand.

This is the simplest case of the orthogonal projection (see below).

This solution has some strong assumptions, see below.

D G Rossiter
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Matrix formulation

The general form of the linear model is Y = XB + ε; if there is only one response variable,
this is y = Xb + ε.

X is called the design matrix, with one column per predictor, with that predictor’s value
for the observation i.

In the simple linear regression case, there is only one predictor variable x, and the design
matrix X has an inital column of 1’s (representing the mean) and a second column of the
predictor variable’s values at each observation:


y1

y2

. . .
yn

 =


1 x1

1 x2

. . .
1 xn


[
b0

b1

]
+


ε1

ε2

. . .
εn



where the ε are identically and indepenently distributed (IID).
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Solution by orthogonal projection

Gauss-Markov theorem: under the assumptions (1) linear relation; (2) errors have
expectation zero; (3) errors are uncorrelated; (4) errors have equal variances:

Then: the “best linear unbiased estimator” (BLUE) B̂ of the regression coefficients is given
by the orthogonal projection:

B̂ = [X′X]−1[X′y]

where ′ indicates transposition and −1 matrix inversion.

D G Rossiter
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Random effects model

Error in both predictand yi and predictors Xi.

Both variables should have Gaussian error, with some correlation. This is modelled as a
bivariate normal distribution of two random variables, X and Y

X ∼ N (µX, σX)
Y ∼ N (µY , σY)

ρXY = Cov(X, Y)/σXσY

D G Rossiter
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Random effects lines

Source: Webster, European Journal of Soil Science 48:558 (1997), Fig. 1
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Fitting a regression line

Fit a line that “best” describes the response-predictor relation.

Different levels of assumptions about functional form:

1. Exploratory, non-parametric

2. Parametric

3. Robust

D G Rossiter



Correlation, Regression, etc. 35

A parametric linear fit

Model straw yield as function of grain yield, by minimizing the sum-of-squares of the
residuals (Gaussian least-squares).

Although there is error in both the grain and straw yield (random effects model), the aim
is to minimize error in the predictand.

This is because the model is used to explain the predictand in terms of the predictor, and
eventually to predict in that direction.

Once one variable is selected as the response, then the aim is to minimize that error, and
the one-way least-squares fit is applied.
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Model summary from R lm“linear models” fit

Call:

lm(formula = straw ~ grain, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.0223 -0.3529 0.0104 0.3734 3.0342

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8663 0.2387 3.63 0.00031

grain 1.4305 0.0601 23.82 < 2e-16

Residual standard error: 0.615 on 498 degrees of freedom

Multiple R-squared: 0.533, Adjusted R-squared: 0.532

F-statistic: 567 on 1 and 498 DF, p-value: <2e-16

The summary shows residuals (lack of fit), model coefficients proportion of
variation explained by model (Adjusted R-squared), and probability that rejecting
various null hypotheses would be an error.
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Scatterplot with best-fit line
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Assumptions of the linear model

The least-squares (parametric) solution is only valid under a strong assumption:

The residuals are identically and indepenently distributed (IID) from a normal
distribution

This implies:

1. no dependence of residual on fitted values;

2. no difference in spread of residuals through fitted value range: homoscedascity

3. residuals have a normal distribution (µε ≡ 0)

D G Rossiter
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Model diagnostics

The assumptions can visualized and tested.

The most important tools are the diagnostic plots.

These are of several kinds; the most important are:

� Normal probability plot of the residuals

� Plot of residuals vs. fits

� Leverage of each observation (influence on fit)

� Cook’s distance to find poorly-fitted observations

D G Rossiter
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Diagnostic plots
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Here, a few badly under-fit plots, i.e., (actual - predicted) too positive.

Both tails of the Q-Q plot are too “heavy” – a contaminated normal distribution?
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Anscombe relations: fits vs. residuals
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Evaluation of model fit (1): 1-1 line
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Evaluation of model fit (2): coefficient of determination

The R2 reported by the model summary is the coefficient of determination:

This is the complement of the:

� residual sum of squares RSS =
∑n
i=1(zi − ẑi)2

� . . . as a proportion of the . . .

� total sum of squares TSS =
∑n
i=1(zi − z̄)2:

where ẑi is the predicted (modelled) value and z̄ is the mean response. So:

R2 = 1− RSS
TSS

R2 ∈ [0 . . .1], it measures the proportion of variance in the response (predictand)
explained by the model, compared to the null model (prediction by the mean of the
response).
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Visualization of the coefficient of determination
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RSS: 188

Total length of residual lines is much shorter to the model line than to the mean line.
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Calibration vs. validation

Goodness-of-fit only measures the success of calibration to the particular sample
dataset.

We are actually interested in validation of the model over the whole population

� sample vs. population: representativeness, sample size
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Confidence intervals of estimation

The parameters of the regression equation have some uncertainty, expressed as their
standard errors of estimation:

Example: coefficients of the straw vs. grain linear regression:

Estimate Std. Error

(Intercept) 0.86628 0.238715

grain 1.43050 0.060053

These can be multiplied by the appropriate t-value to obtain confidence intervals.
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Estimation variance

Problem: the reported variance of the slope parameter s2
Y .x is only valid at the centroid of

the regression, x̄.

This variance is computed from the deviations of actual and estimated values:

s2
Y .x = 1

n− 2

n∑
i=1

(yi − ŷi)2

The variance at other values of the predictand also depends on the distance from the
centroid (x0 − x̄)2:

s2
Y0

= s2
Y .x
(
1+ 1

n
+ (x0 − x̄)2∑n

i=1(xi − x̄)2
)

This means that the slope could “tilt” a bit around the centroid.
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Visualization of uncertainty in the regression parameters
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In this case, quite a narrow confidence range of the equation, despite point spread.

Note: R function predict, argument interval="confidence"

D G Rossiter



Correlation, Regression, etc. 49

Prediction

One use of the fitted regression equation is to predict at arbitrary values of the predictor.

This could apply to future events or observed values of the predictor, where the
estimated value of the predictand is wanted.

Example: Grain has been measured but not straw, what is the likely straw yield for a grain
yield of 3 lbs plot-1?

Best-fit line: straw = 0.87 + 1.43 * grain

Direct calculation:

> 0.87 + 1.43 * 3

[1] 5.16

[1] "Predicted straw yield for grain yield 3 lbs plot-1: 5.16 lbs plot-1"
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Prediction uncertainty

Two sources of prediction uncertainty:

1. The uncertainty of fitting the best regression line from the available data; this is the
estimation uncertainty (above);

2. The uncertainty in the process, i.e. the inherent noise: the residual variance.

Example: predicted straw yields near centroid (≈ 4), 4.5, 5, 5.5, 6:

$fit

1 2 3 4 5

6.5883 7.3035 8.0188 8.7340 9.4493

$se.fit

1 2 3 4 5

0.027666 0.043037 0.068863 0.097135 0.126220

Notice how the standard error of the fit increases with distance from the centroid.
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Visualizing prediction uncertainty
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Here, most of the prediction uncertainty is from the noisy data, not the fit.

Note: R function predict, argument interval="prediction"
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Topic: Model evaluation

(Often called “validation”)

Measures of model quality:

� internal : the data used to build the model is also used to evaluate it

* goodness-of-fit; adjusted for dataset size and number of parameters, e.g., AIC,
adjusted R2

* not a true test of predictive accuracy

� external: evaluate with independent data from the same population

* a completely different set
* part of a single set: split the dataset into a “calibration” and a “validation” set

� cross-validation (“jackknifing”)

* one dataset, repeated split, recalibration, compare predicted with actual
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1:1 Evaluation

1. The model is developed using only the observations in the calibration set;

2. This model is used to predict at the the observations in the validation set, using the
actual (measured) values of the predictor (independent) variable(s);

3. These predicted values are compared to the actual (measured) values of the response
(dependent) variable in the validation set.

This relation should be exactly 1:1

D G Rossiter



Correlation, Regression, etc. 54

Splitting a dataset

Tradeoff:

1. The calibration set must be large enough reliable modelling;

2. The validation set must be large enough for reliable validation statistics.

A common split in a medium-size dataset (100–500 observations) is 3 to 1, i.e., 3/4 for
calibration and 1/4 for validation.

Select observations for each set:

� random: select at random (without replacement); this requires no assumptions about
the sequence of items in the dataset;

� systematic: select in sequence; this requires absence of serial correlation, i.e., that
observations listed in sequence be independent;

� stratified: first divide the observations by some factor and then apply either a random
or systematic sampling within each stratum, generally proportional to stratum size.
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Example: selecting 3/4 for calibration, 1/4 for evaluation

> (n <- dim(mhw)[1])

[1] 500

> set.seed(621)

> head(index.calib <- sort(sample(1:n, size = floor(n * 3/4), replace = F)),

+ n = 12)

[1] 1 2 3 4 6 7 8 10 12 13 14 15

> length(index.calib)

[1] 375

> head(index.valid <- setdiff(1:n, index.calib), n = 12)

[1] 5 9 11 17 18 21 29 31 34 37 39 41

> length(index.valid)

[1] 125
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Calibrating the model

The model is built with the calibration subset.

Example: predict straw yield from grain yield, simple linear regression:

> cal.straw.grain <- lm(straw ~ grain, data = mhw, subset = index.calib)

> summary(cal.straw.grain)

Call:

lm(formula = straw ~ grain, data = mhw, subset = index.calib)

Residuals:

Min 1Q Median 3Q Max

-2.0145 -0.3451 0.0244 0.3561 3.0500

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8258 0.2657 3.11 0.002 **

grain 1.4376 0.0672 21.38 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.607 on 373 degrees of freedom

Multiple R-squared: 0.551, Adjusted R-squared: 0.55

F-statistic: 457 on 1 and 373 DF, p-value: <2e-16
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Predicting at evaluation observations

This model is used to predict at the evaluation observations.

> summary(pred <- predict.lm(cal.straw.grain, newdata = mhw[index.valid,

+ ]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.75 6.17 6.66 6.60 7.02 7.93

> summary(actual <- mhw[index.valid, "straw"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.77 6.03 6.53 6.65 7.28 8.75

Note in this case (typical) the extremes and quartiles are narrower.
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Plot on 1:1 line
> plot(actual ~ pred, ylab="Actual", xlab="Predicted", asp=1,

+ main="Mercer-Hall trial, straw yield, lbs/plot",

+ xlim=c(4,9), ylim=c(4,9), pch=21, bg="red");

> abline(0,1); grid(lty=1)
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Note some very poorly-
modelled points!

These may reveal
model deficiencies
(factors not
considered).
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Measures of model quality

Reference: Gauch, H.G., J.T.G. Hwang, and G.W. Fick. 2003. Model evaluation by
comparison of model-based predictions and measured values. Agronomy Journal 95(6):
1442–1446.

MSD Mean Squared Deviation. How close, on average the prediction is to reality.
Square root: Root Mean Squared Error of Prediction (RMSEP)

SB Squared bias. Are predictions systematically higher or lower than reality?

NU Non-unity slope. Is the relation between predicted and actual proportional 1:1
throughout the range of values?
If not, there is either an under-prediction at low values and corresponding
over-prediction at high variables (slope > 1), or vice-versa (slope < 1).

LC Lack of correlation. How scattered are the predictions about the 1:1 line?

MSD = SB + NU + LC
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Formulas

n total validation observations; yi is the true (measured) value of validation observation i;
ŷi is the predicted value of validation observation i; the y is the arithmetic mean of the yi

MSD = 1
n

n∑
i=1

(yi − ŷi)2

SB = (ŷ −y)2

NU = (1− b2)
1
n

n∑
i=i
(ŷi − ŷ)2

LC = (1− r 2)
1
n

n∑
i=i
(yi −y)2

b is the slope of the least-squares regression of actual values on the predicted values, i.e.,∑
yiŷi/

∑
ŷ2
i ; this is also called the gain.

r 2 is the square of the correlation coefficient r1:1 between actual and predicted, i.e.,
(
∑
yiŷi)2/(

∑
yi)2(

∑
ŷi)2.
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Geometric interpretation

SB Translation The model systematically over- or under-predicts.

� could correct the model with a single consistent translation

NU Rotation The average relation between actual and predicted value is not 1:1, after
correcting for translation

� typical: rotate below 1:1 – underpredict highest, overpredict lowest values

LC Scatter The model is not precise.

These are very different model errors!
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Example

> paste("SB:", round(valid.sb <- (mean(pred) - mean(actual))^2, 4))

[1] "SB: 0.0024"

> regr.actual.pred <- lm(actual ~ pred)

> paste("NU:", round(valid.nu <- (1 - coef(regr.actual.pred)[2])^2 * mean((pred -

+ mean(pred))^2), 8))

[1] "NU: 0.0005003"

> valid.msd.actual <- mean((actual - mean(actual))^2)

> r2 <- summary(regr.actual.pred)$r.squared

> paste("LC:", round(valid.lc <- (1 - r2) * valid.msd.actual, 4))

[1] "LC: 0.4042"

> paste("MSD:", round(valid.msd <- mean((actual - pred)^2), 4))

[1] "MSD: 0.4071"

> paste("SB + NU + LC:", round(valid.sb + valid.nu + valid.lc, 4))

[1] "SB + NU + LC: 0.4071"

D G Rossiter



Correlation, Regression, etc. 63

Easily-interpretable measures

> paste("Bias:", round((mean(pred) - mean(actual)), 3))

[1] "Bias: -0.049"

> paste("Gain:", round(coefficients(regr.actual.pred)[2], 3))

[1] "Gain: 0.963"

> paste("RMSEP:", round(sqrt(valid.msd), 4))

[1] "RMSEP: 0.6381"

Ideally, bias = 0, gain =1, RMSEP ≈ 0; here:

� slightly negative bias (average under-prediction)

� slightly low gain (typical)

� large RMSEP (≈ 10% of mean): imprecise model
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Visualizing gain and bias
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Topic: No-intercept models

It is possible to fit the model without an intercept, i.e., the linear relation is forced through
the origin (0,0). The equation becomes:

yi = βxi + εi

There is only a slope to be estimated; the intercept is fixed at 0.

This is also called regression through the origin.
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Implications of a no-intercept model

� The mean residual is (in general) not zero;

� The residual sum-of-squares is (in general) larger than for a model with intercept;

� The usual formula for goodness-of-fit is not appropriate (see below).

Even if we know from nature that the relation must incude (0,0), this takes away a degree
of freedom from the fit, and gives a poorer fit.
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Appropriateness of a no-intercept model

1. There are physical reasons why the relation must include (0,0);

� e.g., no straw → no grain is possible (but not vice-versa!)

2. If non-negative variables, a negative prediction should be avoided;

� e.g., impossible to have negative straw or grain in a plot
� This can also be avoided by setting any negative predictions to zero

3. The range of the observations covers (0,0) or at least is close;

� otherwise we are assuming a linear form from the origin to the range of our data,
when it may have some other form, e.g., exponential, power . . . ; there is no evidence
for choosing a linear form near the origin

4. The null hypothesis H0 : β0 = 0 in a linear regression with intercept can not be
disproven (t-test of the coefficient).
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Fitting a no-intercept model

The slope β̂Y .x can not be estimated from the sample covariance sXY and variance of the
predictand s2

x, because the (co)variances are relative to means, which we can not
compute (there is no degree of freedom, because of the fixed intercept).

Instead, the slope is computed by minimizes the RSS, again by orthogonal projection:
b = [x′x]−1[x′y], where the design matrix x here does not have an initial column of
1’s, just a column of xi.

This reduces to: ∑
xiyi∑
x2
i
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Model summary from no-intercept model

Call:

lm(formula = straw ~ grain - 1, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.1496 -0.3660 0.0292 0.3657 3.1515

Coefficients:

Estimate Std. Error t value Pr(>|t|)

grain 1.647 0.007 235 <2e-16

Residual standard error: 0.622 on 499 degrees of freedom

Multiple R-squared: 0.991, Adjusted R-squared: 0.991

F-statistic: 5.54e+04 on 1 and 499 DF, p-value: <2e-16

The slope increased, from 1.43 for the model with intercept to 1.65 for the model without,
because the fitted intercept was greater than zero and must be compensated if we force 0
intercept.

The coefficient of determination increased substantially, from 0.53 for the model with
intercept, to 0.99 for the model without.
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Scatterplot with best-fit lines
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Straw yield predicted by grain yield

slope (0 intercept): 1.65

slope (  intercept): 1.43

Intercept = 0.87 , Pr(>|t|) = 0.000314

Here the intercept from the full model is highly unlikely to be zero, so the no-intercept
model is not appropriate. Also, the range of the observations is far from (0,0) so no
possibility of negative predictions; no evidence for model form near the origin.
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Coefficient of determination for no-intercept model

Since there is no intercept in the design matrix, the total sum of squares must be
computed relative to zero: TSS =

∑n
i=1(yi − 0)2, rather than relative to the sample mean

ȳ . We still define R2 as:

R2 = 1− RSS
TSS

But since the TSS is computed relative to zero, it tends to be quite high (no compensation
for the sample mean), so even though the RSS is larger than if an intercept is included, the
R2 tends to be very high.

Conclusion: R2 is not a meaningful measure of goodness-of-fit; use residual standard error
(or sum-of-squares) instead.
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Topic: Structural analysis

Recall:

1. Variables have different status

(a) A univariate linear regression of straw (dependent) on grain (independent) yield;
(b) A univariate linear regression of grain (dependent) on straw (independent) yield.

2. Variables are of equal status

(a) A bivariate linear correlation between the two variables (straw and grain yields);
(b) A linear structural relation between the two yields.

“Structure”: underlying relation between two variables, considered equally.
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Example: two slopes for the same relation
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Random effects lines

Recall:

Source: Webster, European Journal of Soil Science 48:558 (1997), Fig. 1
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Which equation is “correct”?

1. If modelling straw based on grain: regression straw vs. grain

2. If modelling grain based on straw: regression grain vs. straw

3. If modelling the relation between grain and straw: structural analysis

The relation is interesting e.g. for the best description of plant morphology: the
grain/straw ratio
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Law-like relations

Linear Model (one predictor, one predictand): y = α+ βx

Both random variables have some random error, not necessarily the same:

X = x + ξ (1)

Y = y + η (2)

Error variances σ 2
ξ and σ 2

η ; ratio λ:

λ = σ 2
η/σ

2
ξ (3)

Maximum-likelihood estimator of the slope β̂Y .X for predictand Y :

β̂Y .X = 1
2sXY

{
(s2
Y − λs2

X)+
√
(s2
Y − λs2

X)2 + 4λs2
XY

}
(4)
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Setting the error variance ratio

1. From previous studies

2. Orthogonal: Assume equal error variances: λ = 1

� must have the same unit of measure
� must have a priori reason to expect them to have similar variability

3. Proportional: Equal to the sample variances λ ≈ s2
y/s2

z

� normalizes for different units of measure and for different process intensities
� this is the Reduced Major Axis (RMA), popular in biometrics
� It is equivalent to the axis of the first standardized principal component (see

below)

(In the case of the Mercer-Hall wheat yields, since no treatments were applied by definition
λ ≈ s2

y/s2
z and the RMA should be used.)
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Example of structural analysis fits
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Topic: Multiple linear regression

Objective: model one variable (the predictand) from several other variables (the
predictors or explanatory variables)

� to“explain”

� to predict
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Example dataset

Source: M Yemefack, DG Rossiter, and R Njomgang. Multi-scale characterization of soil
variability within an agricultural landscape mosaic system in southern Cameroon.
Geoderma, 125: 117–143, 2005.

� Tropenbos Cameroon research programme

� 147 soil profiles

� geoferenced, in 4 agro-ecological zones, 8 previous landuses

� Three soil layers (1: 0–10 cm, 2: 10–20 cm, 3: 30–50 cm)

� Measured variables:

1. Clay content, weight % of the mineral fine earth (< 2 mm);
2. Cation exchange capacity, cmol+ (kg soil)-1

3. Organic carbon (OC), volume % of the fine earth.
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Transform to more symmetric distributions
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Example: Modelling CEC

Theory: cations are retained and exchanged by reactive surfaces on clay and organic
matter

Objective: explain topsoil CEC by topsoil clay content, topsoil organic matter, or both.

Purpose: (1) avoid expensive CEC lab. analysis; (2) understand the process of cation
exchange

Models:

1. null regression: every value is predicted by the mean.

2. simple regressions: CEC = f(clay); CEC = f(OC)

3. multiple regression: CEC = f(clay, OC)

(a) additive effects
(b) interaction effects
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Model formulas and solution by orthogonal projection

1. y = β0

2. y = β0 + β1x1 (clay)

3. y = β0 + β1x2 (OC)

4. y = β0 + β1x1 + β2x2 (clay, OC)

5. y = β0 + β1x1 + β2x2 + β3x1x2 (clay, OC, interaction)

All are solved by orthogonal projection:

b = [X′X]−1[X′y]

b: parameter vector; X: design matrix; y: response vector
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Correcting for over-fitting

For linear models, use the adjusted R2 in place of the un-adjusted coefficient of
determination.

This decreases the apparent R2, computed from the ANOVA table, to account for the
number of predictive factors:

R2
adj ≡ 1− (1− R2)

n− 1
n− k− 1

The proportion of variance not explained by the model (1− R2) is increased with the
number of predictors k. As n, the number of observations, increases, the correction
decreases.
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Null model

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

1.0 1.2 1.4 1.6 1.8

2
3

4
5

ltClay1

sq
rt

C
E

C
1

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

2
3

4
5

ltOC1

sq
rt

C
E

C
1

Adjusted R2: 0 (by definition: total sum-of-squares is squared deviations from the mean;
the mean just centres the data)
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Simple regression models
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Adjusted R2: 0.2876, 0.5048

Clearly, OC is a much better single predictor than clay
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Simple regression models: coefficients

Single predictor: topsoil clay

Call:

lm(formula = sqrtCEC1 ~ ltClay1)

Coefficients:

(Intercept) ltClay1

0.423 1.960

Single predictor: topsoil organic C

Call:

lm(formula = sqrtCEC1 ~ ltOC1)

Coefficients:

(Intercept) ltOC1

2.14 2.62
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Simple regression models: Actual vs. fits
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Simple regression models: Regression diagnostics
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Multiple regression: additive

model: CEC = f(clay, OC); Predictors are independent

Call:

lm(formula = sqrtCEC1 ~ ltOC1 + ltClay1)

Coefficients:

(Intercept) ltOC1 ltClay1

1.419 2.239 0.612
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Additive model: Actual vs. fits
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Additive model: regression diagnostics
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Multiple regression: interaction

model: CEC = f(clay, OC); Predictors may have interactions

e.g. synergistic or antagonistic effects

Call:

lm(formula = sqrtCEC1 ~ ltOC1 * ltClay1)

Coefficients:

(Intercept) ltOC1 ltClay1 ltOC1:ltClay1

3.158 -2.134 -0.609 2.950

D G Rossiter
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Interaction model: Actual vs. fits
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Interaction model: regression diagnostics
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Comparing models – goodness-of-fit
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Comparing models – diagnostics
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Comparing models – numerically

� Model summaries

* Goodness-of-fit, e.g. adjusted R2

* Significance of coefficients

� An Analysis of Variance of a set of hierarchical models

* Gives the probability that the improvement in model (reduction in residual
sum-of-squares) is just due to chance

D G Rossiter



Correlation, Regression, etc. 99

Model summary – simple regression

Call:

lm(formula = sqrtCEC1 ~ ltOC1)

Residuals:

Min 1Q Median 3Q Max

-1.0659 -0.3374 0.0012 0.2694 2.0889

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.145 0.101 21.2 <2e-16

ltOC1 2.617 0.214 12.2 <2e-16

Residual standard error: 0.513 on 145 degrees of freedom

Multiple R-squared: 0.508, Adjusted R-squared: 0.505

F-statistic: 150 on 1 and 145 DF, p-value: <2e-16

D G Rossiter



Correlation, Regression, etc. 100

Model summary – additive multiple regression

Call:

lm(formula = sqrtCEC1 ~ ltOC1 + ltClay1)

Residuals:

Min 1Q Median 3Q Max

-0.969 -0.328 -0.027 0.256 2.040

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.419 0.327 4.34 2.6e-05

ltOC1 2.239 0.266 8.43 3.4e-14

ltClay1 0.612 0.262 2.33 0.021

Residual standard error: 0.505 on 144 degrees of freedom

Multiple R-squared: 0.526, Adjusted R-squared: 0.519

F-statistic: 79.9 on 2 and 144 DF, p-value: <2e-16

Note clay has p=0.0211 probability that removing it from the model (i.e. accepting the null
hypothesis of no effect) would be wrong.

In other words, about a 1/50 chance that it doesn’t really add to the fit, once OC is in the
equation.

D G Rossiter
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Model summary – interaction multiple regression

Call:

lm(formula = sqrtCEC1 ~ ltOC1 * ltClay1)

Residuals:

Min 1Q Median 3Q Max

-0.9375 -0.3223 -0.0049 0.2628 2.0610

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.158 0.696 4.54 1.2e-05

ltOC1 -2.134 1.577 -1.35 0.1783

ltClay1 -0.609 0.504 -1.21 0.2295

ltOC1:ltClay1 2.950 1.050 2.81 0.0056

Residual standard error: 0.494 on 143 degrees of freedom

Multiple R-squared: 0.551, Adjusted R-squared: 0.541

F-statistic: 58.5 on 3 and 143 DF, p-value: <2e-16

Note that the interaction term is here more significant than either single predictor.

D G Rossiter
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ANOVA of a hierarchical set of models

Compare the variance ratios with an F-test, taking in account the change in degrees of
freedom: more for simpler models.

Example: interaction, additive, OC only, null models:

Analysis of Variance Table

Model 1: sqrtCEC1 ~ ltOC1 * ltClay1

Model 2: sqrtCEC1 ~ ltOC1 + ltClay1

Model 3: sqrtCEC1 ~ ltOC1

Model 4: sqrtCEC1 ~ 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 143 34.9

2 144 36.8 -1 -1.9 7.9 0.0056

3 145 38.2 -1 -1.4 5.7 0.0183

4 146 77.6 -1 -39.4 161.8 <2e-16

Here the more complex models are all probably better than their hierarchically-simpler
models.

D G Rossiter



Correlation, Regression, etc. 103

Stepwise regression

Automatically decide which predictors to include

� Forward: start with best single-predictor model, keep adding predictors if they
“significantly” improve model

� Backward: start with saturated model (all predictors, all interactions), keep deleting
predictors if the reduced model is not “significantly” worse

Comparing models: goodness-of-fit, adjusted for number of parameters

Problem: if there is (near)colinearity selection of predictors can be sensitive to just a few
data points

Problem: can substitute for modeller’s judgement, especially if several models give
similar results

D G Rossiter
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Example of stepwise regression

Predict CEC in the 30-50 cm layer . . .

. . . from all three variables (clay, OC, and CEC) for the two shallower layers

i.e. total of six possible predictors – are all necessary?

(Purpose: avoid sampling the deeper subsoil)

D G Rossiter
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Final results are different!

Forward:

Call:

lm(formula = Clay5 ~ ltClay1 + Clay2 + CEC2)

Coefficients:

(Intercept) ltClay1 Clay2 CEC2

9.402 5.313 0.798 -0.235

[1] "AIC: 835.9"

Backward:

Call:

lm(formula = Clay5 ~ Clay2 + CEC2)

Coefficients:

(Intercept) Clay2 CEC2

14.519 0.861 -0.199

[1] "AIC: 835.2"

D G Rossiter
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Topic: Regression trees

Objective: model one variable (the predictand) from several other variables (the
predictors or explanatory variables)

This is the same objective as for MLR and other model-based regression methods, but:

� no need to choose the functional form (e.g., multivariate linear)

� no assumption that the functional form is the same throughout the range of the
predictors.

� no need to transform predictors or predictand to satisfy the assumptions of a model form

� no need to choose among correlated predictor variables

� no need to explicitly consider (or not) interactions
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Data mining vs. statistical modelling

This is a data mining approach: do not impose a statistical model, rather, propose an
algorithm to reveal the structure in the dataset.

Here the structure is a binary tree such that each split improves the prediction:

� by the maximum reduction in within-group variance

� this is equivalent to the maximum increase in between-group variance.

The leaves (terminal nodes) each then have a simple prediction model, usually a
constant that is the predicted value for all cases that end at that terminal node..

The tree can easily be interpreted: we see the variables and their threshold values, and
can follow the tree for any new observation. .
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Regression trees algorithm

1. Identify the predictors and predictand; compute the overall mean and variance of the
predictand.

2. Recursively:

(a) Look for the predictor variable, and its threshold value, that “best” splits the
data into two groups.
� “Best”: maximum reduction in sum of within-group sums of squares in the response

variable: SST − (SSL + SSR).
(b) Split at that point into two subtrees
(c) Compute the mean and variance of the predictand in each group

3. This continues until the subgroups either:

(a) reach a user-specified minimum size, or
(b) no substantial improvement can be made; that is the sum of the within-groups

sum of squares can not be further reduced below a user-defined threshold.
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Example: A regression tree for Cameroon CEC

Recall: predict cation exchange capacity (CEC) of topsoils from their organic C and clay
concentration.

Fit a full tree using the two predictors. Note there is (and can not be) any interaction
term.

> library(rpart)

> tree <- rpart(sqrtCEC1 ~ ltOC1 + ltClay1, data=obs, xval=20, minsplit=4, cp=0.0075)

> x <- tree$variable.importance; (variableImportance = 100 * x / sum(x))

ltOC1 ltClay1

69.738 30.262

The last line shows the relative importance of each variable in making the prediction, i.e.,
how much variance was reduced by the splits based on each variable. Here we see OC is
twice as important as clay in predicting CEC in this sample set.
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Control parameters

Arguments to rpart.control, passed from rpart:

minsplit minimum number of observations at a leaf to try to split

cp complexity parameter, see “pruning”, below

xval number of groups for cross-validation, see “pruning”, below

The next slide shows the full tree.

> library(rpart.plot)

> rpart.plot(tree, type=4, extra=1)
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Full regression tree

ltOC1 < 0.61

ltOC1 < 0.38

ltClay1 < 1.4

ltOC1 < 0.35

ltClay1 >= 1.4

ltOC1 >= 0.37

ltOC1 < 0.2

ltOC1 >= 0.22

ltOC1 < 0.33

ltClay1 < 1.5

ltClay1 < 1.5

ltOC1 >= 0.41

ltOC1 < 0.92

ltClay1 < 1.6

 >= 0.61

 >= 0.38

 >= 1.4

 >= 0.35

 < 1.4

 < 0.37

 >= 0.2

 < 0.22

 >= 0.33

 >= 1.5

 >= 1.5

 < 0.41

 >= 0.92

 >= 1.6

3.3
n=147

3
n=117

2.8
n=59

2.6
n=36

2.6
n=31

3.1
n=5

2.5
n=2

3.4
n=3

2.9
n=23

2.3
n=2

3
n=21

2.7
n=5

3.1
n=16

2.9
n=14

2.8
n=9

2.4
n=3

3
n=6

3.2
n=5

4.2
n=2

3.3
n=58

3.1
n=26

3
n=20

3.6
n=6

3.4
n=32

4.2
n=30

4.1
n=28

3.9
n=9

4.3
n=19

5.3
n=2

� Leaves: number n of
observations; mean value
of the predictand at these

� Branches: selection
variable and threshold
value

� Root: all observations
and their mean value (“null
model”)

D G Rossiter



Correlation, Regression, etc. 112

Assessing over-fitting

A full tree over-fits: it fits noise specific to this dataset, i.e., this sample, rather than
structure, common to all datasets that could be collected from the underlying
population.

Assess this with x-fold cross-validation, to find the optimum tree size, we then prune
the tree to this size. Algorithm:

1. Randomly split the observations into x groups (rpart.control default is 10)..

2. For each complexity parameter (roughly, the maximum number of splits):

(a) For each group:
i. Remove from the dataset
ii. Re-fit the tree without the removed observations
iii. Use the tree to predict at the removed observations, using their predictor values
iv. Compute the squared error

(b) Summarize errors as root-mean-squared error (RMSE).

3. Display a table and graph of complexity parameter vs. cross-validation error

D G Rossiter



Correlation, Regression, etc. 113

Control parameter vs. cross-validation error: table

> printcp(tree) # this will be slightly different with each call to rpart: random split for x-val

Regression tree:

rpart(formula = sqrtCEC1 ~ ltOC1 + ltClay1, data = obs, xval = 20,

minsplit = 4, cp = 0.0075)

Variables actually used in tree construction:

[1] ltClay1 ltOC1

Root node error: 77.6/147 = 0.528

n= 147

CP nsplit rel error xerror xstd

1 0.44346 0 1.000 1.011 0.1233

2 0.11258 1 0.557 0.585 0.0663

3 0.03435 2 0.444 0.486 0.0717

4 0.02035 3 0.410 0.490 0.0719

5 0.01808 5 0.369 0.527 0.0744

6 0.01323 9 0.297 0.503 0.0783

7 0.01126 10 0.283 0.490 0.0793

8 0.01102 11 0.272 0.495 0.0797

9 0.00845 12 0.261 0.520 0.0876

10 0.00750 14 0.244 0.564 0.0905
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Control parameter vs. cross-validation error: graph
> plotcp(tree) # this will be slightly different with each call to rpart: random split for x-val

●
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0.
4

0.
6

0.
8

1.
0

1.
2

Inf 0.22 0.026 0.015 0.011 0.008

1 2 3 4 6 10 11 12 13 15

size of tree

Here it seems we only need a
3-split tree!

The data was very noisy
with respect to these two
predictors.

Examine the previous table
or this graph to find the
complexity parameter
corresponding to this number
of splits.
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Correcting for over-fitting

Prune the tree back to the value of the complexity parameter suggested by the
cross-validation plot:

> ix <- which.min(tree$cptable[,"xerror"]) # find the minimum cross-validation error

> ix.cp <- tree$cptable[ix,"CP"] # associated complexity parameter

> tree.p <- prune(tree, cp=ix.cp) # prune to this complexity

> rpart.plot(tree.p, type=4, extra=1)

ltOC1 < 0.61

ltOC1 < 0.38

 >= 0.61

 >= 0.38

3.3
n=147

3
n=117

2.8
n=59

3.3
n=58

4.2
n=30

Only OC is now used; there
are only three groups of CEC
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Prediction with a regression tree

Predict back at calibration points:

> p.rpp <- predict(tree.p, newdata=obs)

> length(unique(p.rpp))

[1] 3

> summary(r.rpp <- obs$sqrtCEC1 - p.rpp)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.0600 -0.3020 0.0234 0.0000 0.2870 2.0400

> sqrt(sum(r.rpp^2)/length(r.rpp))

[1] 0.48413

Here we see the fitting errors.
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1:1 plot: actual vs. fits

> summary(r.rpart <- obs$sqrtCEC1 - p.rpp)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.0600 -0.3020 0.0234 0.0000 0.2870 2.0400

> sqrt(sum(r.rpart^2)/length(r.rpart))

[1] 0.48413

> plot(obs$sqrtCEC1 ~ p.rpp, asp=1, pch=20, xlab="predicted", ylab="actual"); grid(); abline(0,1)
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Note only three predictions
(“rectangles”).
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Instablity of regression trees

Build several trees with a 90% subset of the observations:

> dim(obs)

[1] 147 18

> n <- dim(obs)[1]

> obs.subset <- obs[sample(1:n, size=n*.9),c("sqrtCEC1","ltOC1","ltClay1")]

> dim(obs.subset) # 10% of observations randomly removed

[1] 132 3

> tree.1 <- rpart(sqrtCEC1 ~ ltOC1 + ltClay1, data=obs.subset, xval=20, minsplit=4, cp=0.0075)

> obs.subset <- obs[sample(1:n, size=n*.9),c("sqrtCEC1","ltOC1","ltClay1")]

> tree.2 <- rpart(sqrtCEC1 ~ ltOC1 + ltClay1, data=obs.subset, xval=20, minsplit=4, cp=0.0075)

> obs.subset <- obs[sample(1:n, size=n*.9),c("sqrtCEC1","ltOC1","ltClay1")]

> tree.3 <- rpart(sqrtCEC1 ~ ltOC1 + ltClay1, data=obs.subset, xval=20, minsplit=4, cp=0.0075)

> obs.subset <- obs[sample(1:n, size=n*.9),c("sqrtCEC1","ltOC1","ltClay1")]

> tree.4 <- rpart(sqrtCEC1 ~ ltOC1 + ltClay1, data=obs.subset, xval=20, minsplit=4, cp=0.0075)

See trees on next page.
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Instablity of regression trees – result

ltOC1 < 0.61

ltOC1 < 0.38

ltClay1 < 1.4

ltOC1 < 0.2

ltOC1 >= 0.22

ltOC1 >= 0.39

ltClay1 < 1.5

ltOC1 < 0.92

 >= 0.61

 >= 0.38

 >= 1.4

 >= 0.2

 < 0.22

 < 0.39

 >= 1.5

 >= 0.92

3.3
n=132

3
n=107

2.7
n=53

2.6
n=33

3
n=20

2.6
n=4

3.1
n=16

2.9
n=14

4.2
n=2

3.3
n=54

3.3
n=51

3.1
n=20

3.4
n=31

3.9
n=3

4.3
n=25

4.2
n=23

5.3
n=2

ltOC1 < 0.61

ltOC1 < 0.38

ltOC1 < 0.21

ltClay1 < 1.1

ltOC1 < 0.15 ltClay1 >= 1.4

ltOC1 >= 0.22

ltOC1 >= 0.38

ltOC1 < 0.34

ltClay1 < 1.5

ltClay1 < 1.5

ltOC1 >= 0.41

ltOC1 < 0.47

ltOC1 < 0.92

ltClay1 < 1.4

ltOC1 < 0.63

 >= 0.61

 >= 0.38

 >= 0.21

 >= 1.1

 >= 0.15  < 1.4

 < 0.22

 < 0.38

 >= 0.34

 >= 1.5

 >= 1.5

 < 0.41

 >= 0.47

 >= 0.92

 >= 1.4

 >= 0.63

3.3
n=132

3
n=105

2.8
n=52

2.6
n=21

2.3
n=4

2.1
n=3

3
n=1

2.7
n=17

2.5
n=8

2.9
n=9

2.9
n=31

2.8
n=29

2.3
n=2

2.8
n=27

2.7
n=18

2.6
n=13

3
n=5

3.1
n=9

4.2
n=2

3.3
n=53

3.1
n=23

3
n=19

2.8
n=8

3.1
n=11

3.8
n=4

3.4
n=30

4.2
n=27

4.1
n=25

3.6
n=2

4.2
n=23

3.8
n=3

4.3
n=20

5.3
n=2

ltOC1 < 0.61

ltOC1 < 0.38

ltClay1 < 1.4

ltOC1 < 0.35

ltClay1 >= 1.4 ltClay1 >= 1.4

ltOC1 >= 0.37

ltOC1 < 0.2

ltOC1 >= 0.22

ltOC1 >= 0.41

ltClay1 < 1.5

ltOC1 < 0.47

ltClay1 >= 1.1

ltOC1 < 0.92

ltClay1 < 1.4

 >= 0.61

 >= 0.38

 >= 1.4

 >= 0.35

 < 1.4  < 1.4

 < 0.37

 >= 0.2

 < 0.22

 < 0.41

 >= 1.5

 >= 0.47

 < 1.1

 >= 0.92

 >= 1.4

3.2
n=132

3
n=108

2.8
n=56

2.7
n=35

2.6
n=30

2.2
n=4

2.6
n=26

3.1
n=5

2.5
n=2

3.4
n=3

3
n=21

2.3
n=2

3
n=19

2.7
n=5

3.2
n=14

3
n=12

4.2
n=2

3.3
n=52

3.3
n=45

3
n=17

2.8
n=8

3.1
n=9

3.4
n=28

3.7
n=7

3.6
n=6

4.4
n=1

4.2
n=24

4.2
n=23

3.6
n=2

4.2
n=21

5.4
n=1

ltOC1 < 0.61

ltOC1 < 0.38

ltClay1 < 1.5

ltClay1 < 1.1

ltClay1 >= 1.3

ltOC1 < 0.13

ltOC1 >= 0.22

ltOC1 < 0.21

ltClay1 < 1.3

ltOC1 < 0.33

ltOC1 >= 0.41

ltClay1 < 1.5

ltOC1 < 0.47

ltOC1 < 0.92

ltClay1 < 1.6

 >= 0.61

 >= 0.38

 >= 1.5

 >= 1.1

 < 1.3

 >= 0.13

 < 0.22

 >= 0.21

 >= 1.3

 >= 0.33

 < 0.41

 >= 1.5

 >= 0.47

 >= 0.92

 >= 1.6

3.3
n=132

3
n=104

2.7
n=54

2.7
n=42

2.4
n=5

2.7
n=37

2.6
n=21

2.1
n=2

2.6
n=19

2.5
n=13

2.9
n=6

2.5
n=5

4.8
n=1

2.8
n=16

2.8
n=15

2.7
n=13

3.5
n=2

3.9
n=1

3
n=12

3.3
n=50

3.2
n=42

3
n=22

2.8
n=10

3.2
n=12

3.5
n=20

3.6
n=8

4.2
n=28

4.1
n=26

3.8
n=8

4.3
n=18

5.3
n=2
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Random forests

Problems with regression trees:

1. A small change in the sample set (e.g., a missing or erroneous observation) can make a
large change in the tree;

2. Sub-optimal splits propagate down the tree (there is no way to backtrack);

3. Correlated predictors are only used one way;

4. Discontinuous predictions (“rectangles”);

5. Different cross-validation splits suggest different complexity parameters for smoothing.

Solution: why one tree when you can have a forest?
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Procedure

1. Build a large number of regression trees, independently, using different sets of
observations.

2. These are built by sampling with replacement from the actual observations.

� This is sometimes called bagging: some observations are“in the bag” (used to
build the tree) and others“out of bag” (used to assess prediction error, see below).

� Note! this assumes that the sample fairly represents the population!

3. At each split, randomly select a predictor.

4. Save all these trees; when predicting, use all of them and average their predictions.

5. For each tree we can use observations that were not used to construct it for true
validation, called out-of-bag validation. This gives a good idea of the true prediction
error.
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A random forest for the Cameroon CEC vs. OM and clay
> library(randomForest)

> rf <- randomForest(sqrtCEC1 ~ ltOC1 + ltClay1, data=obs,

+ importance=T, na.action=na.omit, mtry=2)

> print(rf)

Call:

randomForest(formula = sqrtCEC1 ~ ltOC1 + ltClay1, data = obs, importance = T, mtry = 2, na.action = na.omit)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 0.2929

% Var explained: 44.52

> importance(rf)

%IncMSE IncNodePurity

ltOC1 45.1537 57.580

ltClay1 2.9915 13.392

� %IncMSE percent increase in mean squared error if the variable is not used

� IncNodePurity increase in node purity (reduction in within-node variance) if the
variable is used
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How many trees are needed to make a forest?

> plot(rf)

0 100 200 300 400 500

0.
30

0.
35

0.
40

0.
45

rf

trees

E
rr

or

Each run is different (due to randomness); about 250 seem to be adequate in this case (too
much fluctuation with fewer trees, very little improvement with more).

No need to prune, the different trees average out the noise.
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Prediction with a random forest

Predict back at calibration points:

> p.rf <- predict(rf, newdata=obs)

> length(unique(p.rf))

[1] 137

> summary(r.rf <- obs$sqrtCEC1 - p.rf)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.97600 -0.19700 0.00049 -0.00246 0.14800 1.17000

> sqrt(sum(r.rf^2)/length(r.rf))

[1] 0.27683

Note much lower calibration RMSE than from the single regression tree.
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1:1 plot: actual vs. fits: random forest and single regression tree
> plot(obs$sqrtCEC1 ~ p.rf, asp=1, pch=20, xlab="predicted", ylab="actual")

> points(obs$sqrtCEC1 ~ p.rpp, asp=1, pch=20, col="blue"); grid(); abline(0,1)

> abline(0,1); grid()
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Out-of-bag validation

The out-of-bag validation summarizes the predictions at observations that were omitted
in each of the trees in the forest.

> r.rf.oob <- predict(rf)

> sqrt(sum(r.rf.oob^2)/length(r.rf.oob))

[1] 3.3277

This is a much higher error than the calibration error:

� Calibration: 0.28
√

cmol+ (kg soil)-1

� Out-of-bag: 3.33
√

cmol+ (kg soil)-1

This is a realistic estimate of the prediction error, if applied to new observations.

We see this graphically on the next page.
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1:1 plot actual vs. out-of-bag prediction

> plot(obs$sqrtCEC1 ~ r.rf.oob, asp=1, pch=20, xlab="predicted out-of-bag", ylab="actual out-of-bag")

> abline(0,1); grid()
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Topic: Factor Analysis

Here we consider the inter-relations between a set of variables

� Often the set of predictors which might be used in a multiple linear regression.

This is an analysis of the structure of the multivariate feature space covered by a set
of variables.

Uses:

1. Discover relations between variables, and possible groupings

2. Diagnose multi-collinearity;

3. Identify representative variables, e.g., for a minimum data set to be used in regression;

4. Define synthetic variables to be used directly in regression.
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Principal Components Analysis (PCA)

The simplest form of factor analysis; it is a multivariate data reduction technique.

� The vector space made up of the original variables is projected onto another space;

� The new space has the same dimensionality as the original1, i.e., there are as many
variables in the new space as in the old;

� In this space the new synthetic variables, also called principal components are
orthogonal to each other, i.e. completely uncorrelated;

� The synthetic variables are arranged in decreasing order of variance explained.

These synthetic variables can often be interpreted by the analyst, that is, they represent
some composite attribute of the objects of study.

1unless the original was rank-deficient
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Visualize: (1) uncorrelated; (2) decreasing information content

Source: Small, C. (2004). The Landsat ETM+ spectral mixing space. Remote Sensing of Environment, 93, 1-17
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Standardized or not

Two forms:

Standardized each variable has its mean subtracted (so x.j = 0) and is divided by its
sample standard deviation (so σ(x.j) = 1);

� All variables are equally important, no matter their absolute values or spreads;
� This is usually what we want.

Unstandardized use the original variables, in their original scales of measurement;
generally the means are also subtracted to centre the variables

� Variables with larger absolute values and wider spreads are more important, since
they contribute more to the original variance
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Example: Cameroon soil properties

> # non-standardized

> summary(pc <- prcomp(obs[,c("CEC1","Clay1","OC1")]))

Importance of components:

PC1 PC2 PC3

Standard deviation 14.282 4.192 0.93299

Proportion of Variance 0.917 0.079 0.00391

Cumulative Proportion 0.917 0.996 1.00000

> # standardized

> summary(pc.s <- prcomp(obs[,c("CEC1","Clay1","OC1")], scale=TRUE))

Importance of components:

PC1 PC2 PC3

Standard deviation 1.506 0.690 0.5044

Proportion of Variance 0.756 0.159 0.0848

Cumulative Proportion 0.756 0.915 1.0000
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Interpretation

� Proportion of variance explained by component

* always decreasing;
* here, first component explains most of total variation

� Cumulative proportion for components to that number

* always increasing, ends at 100% explained

� Standardization tends to lower the proportion in the first few components; it avoids
the PCs being dominated by the numerically-larger variables.
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Screeplot

A simple visualization of the variance explained.

> screeplot(pc.s, main = "Standardized principal components")
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Rotations

The synthetic variables are composed of a linear combination of the originals; this is a
rotation of the axe by the eigenvectors, also called the loadings of each original variable:

> pc.s$rotation

PC1 PC2 PC3

CEC1 -0.58910 0.45705 -0.666384

Clay1 -0.54146 -0.83542 -0.094322

OC1 -0.59982 0.30525 0.739619

Interpretation (note: signs are arbitrary, depend on algorithm used):

PC1 overall magnitude, “soil activity”; all three original variables contribute about equally
and in the same direction; about 76% of the variance;

PC2 contrast between clay and (CEC and OC); soils with high clay but relatively low CEC
and OC, or vice-verse; about 16% of the variance;

PC3 contrast between clay and CEC; about 8% of the variance.
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Biplots

These show positions of the observations as synthetic variables (bottom, left axes) and the
correlations/variances of the original standardized variables (top, right axes):

> biplot(pc.s, main = "Standardized biplot", pc.biplot = TRUE)
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Interpretation of biplots

� Length of vector is variance explained in this plane;

� Angle between vectors is degree of correlation (closer = more correlated);

� Individual observations are plotted with their PC scores (values in the PC space);

� Points close in this space have similar properties with respect to these two PCs.
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Retrieving synthetic variables

Also called the “scores”.

These can be returned from PCA and then used in any analysis.

> pc.s <- prcomp(obs[, c("CEC1", "Clay1", "OC1")], scale = TRUE,

+ retx = TRUE)

> summary(pc.s$x)

PC1 PC2 PC3

Min. :-5.677 Min. :-2.213 Min. :-2.165

1st Qu.:-0.634 1st Qu.:-0.399 1st Qu.:-0.266

Median : 0.228 Median :-0.019 Median :-0.018

Mean : 0.000 Mean : 0.000 Mean : 0.000

3rd Qu.: 1.145 3rd Qu.: 0.415 3rd Qu.: 0.312

Max. : 2.434 Max. : 2.234 Max. : 1.603

These are now variables ready to use in regression models.
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PCs are uncorrelated

Proof that the PCs are uncorrelated (as opposed to the original variables):

> # PCs

> round(cor(pc.s$x),5)

PC1 PC2 PC3

PC1 1 0 0

PC2 0 1 0

PC3 0 0 1

> # original variables

> round(cor(obs[,c("CEC1","Clay1","OC1")]),5)

CEC1 Clay1 OC1

CEC1 1.00000 0.55796 0.74294

Clay1 0.55796 1.00000 0.59780

OC1 0.74294 0.59780 1.00000
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Mathematics

PCA is a direct calculation from a data matrix. The key insight is that the eigen
decomposition automatically orders the synthetic variables into descending amounts of
variance (predictive power), and ensures they are orthogonal.

This was worked out by Hotelling in 1933.

X: scaled and centred data matrix: rows are observations, columns are variables measured
at each observation; centred and scaled per column

C = XTX : the correlation matrix; this is symmetric and positive-definite (all real roots)

|C− λI| = 0: a determinant to find the characteristic values, also called eigenvalues,
of the correlation matrix.

Then the axes of the new space, the eigenvectors γj (one per dimension) are the
solutions to (C− λjI)γj = 0

Obtain synthetic variables by projection: Y = PX where P is the row-wise eigenvectors
(rotations).
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Details

In practice the system is solved by the Singular Value Decomposition (SVD) of the data
matrix, for numerical stability.

This is equivalent but more stable than directly extracting the eigenvectors of the
correlation matrix.

Accessible explanations:

� Davis, J. C. (2002). Statistics and data analysis in geology. New York: John Wiley &
Sons.

� Legendre, P., & Legendre, L. (1998). Numerical ecology. Oxford: Elsevier Science.
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Topic: Linear model for categorical predictors

Predictors may be categorical:

� Nominal: unordered categories

� Ordinal: categories with a natural order but not on an interval scale

These can also be modelled with the linear model y = BX + ε.
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Example dataset

Tropenbos Cameroon research soil profiles

Categorical predictors:

� 4 agro-ecological zones

� 8 previous landuses

� 3 soil groups in the World Reference Base for Soil Classification
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Summary statistics

Zone:

zone

1 2 3 4

8 40 63 36

Previous land cover:

LC

BF CF FF FV MCA OCA YANA YOP

19 15 17 69 11 14 1 1

Soil groups:

wrb1

1 2 3

40 3 104
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Model from a single categorical predictor

Research question: do the different zones (represented by villages) have different soil
properties?

Example: topsoil clay content (log-transformed)
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Visualizing differences in response by category

Untransformed (left) and log10-transformed (right)
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Boxplots show median, 1st and 3rd quartiles (box limits), fences (1.5 x Inter-Quartile
Range away from quartiles), and boxplot outliers
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Linear model: differences in response by category

Rows of the design matrix X have a single 1 corresponding to the zone of the
observation, 0 for the others.

(Intercept) zone2 zone3 zone4 observation.zone

1 1 1 0 0 2

2 1 1 0 0 2

3 1 0 0 0 1

4 1 0 0 0 1

5 1 1 0 0 2

(Intercept) zone2 zone3 zone4 observation.zone

143 1 1 0 0 2

144 1 1 0 0 2

145 1 1 0 0 2

146 1 0 1 0 3

147 1 0 1 0 3

D G Rossiter



Correlation, Regression, etc. 148

Model summary

Call:

lm(formula = ltClay1 ~ zone)

Residuals:

Min 1Q Median 3Q Max

-0.4231 -0.0866 0.0103 0.0698 0.3678

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.6598 0.0477 34.77 < 2e-16

zone2 -0.0606 0.0523 -1.16 0.24851

zone3 -0.1930 0.0507 -3.81 0.00021

zone4 -0.4479 0.0528 -8.49 2.5e-14

Residual standard error: 0.135 on 143 degrees of freedom

Multiple R-squared: 0.559, Adjusted R-squared: 0.549

F-statistic: 60.4 on 3 and 143 DF, p-value: <2e-16

About half (0.549) of the variability in log10-topsoil clay is explained by the zone in which
the observation was made.

Zones 3 and 4 have significantly lower clay contents, on average, than Zone 1. Zone 2 is
lower but not significantly so.
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Linear model: Actual vs. fits
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Linear model: Regression diagnostics
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Differences between class means

Using Tukey’s “Honestly-significant difference” (HSD) test at the default 95% confidence
level:

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = lmclay.zone)

$zone

diff lwr upr p adj

2-1 -0.060591 -0.19652 0.075342 0.65379

3-1 -0.192955 -0.32469 -0.061222 0.00118

4-1 -0.447866 -0.58505 -0.310680 0.00000

3-2 -0.132364 -0.20332 -0.061407 0.00002

4-2 -0.387275 -0.46791 -0.306644 0.00000

4-3 -0.254911 -0.32824 -0.181582 0.00000
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Topic: Mixed models

It is possible to mix both continuous and categorical predictors in one model.

This is a form of multiple linear regression

The linear model form y = BX+ ε is applicable.
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A simple mixed model

Objective: to predict the subsoil clay content (30–50 cm depth) from the topsoil clay
content (0–10 cm depth) and/or zone.

Purpose: avoid expensive / laborious augering to 50 cm and extra lab. work
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Visualizing the single predictors
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Subsoil almost always has more clay than the topsoil (agrees with theory of soil formation
in this zone).
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Single-predictor models

(1) Subsoil clay vs. topsoil clay (continuous predictor):

Call:

lm(formula = Clay5 ~ Clay1)

Residuals:

Min 1Q Median 3Q Max

-20.626 -3.191 0.005 3.387 14.150

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.7586 1.1556 16.2 <2e-16

Clay1 0.8289 0.0338 24.5 <2e-16

Residual standard error: 5.69 on 145 degrees of freedom

Multiple R-squared: 0.806, Adjusted R-squared: 0.805

F-statistic: 602 on 1 and 145 DF, p-value: <2e-16

(continued . . . )
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Single-predictor models

(2) Subsoil clay vs. zone (categorical predictor):

Call:

lm(formula = Clay5 ~ zone)

Residuals:

Min 1Q Median 3Q Max

-32.95 -5.40 0.16 3.16 24.05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 55.00 3.21 17.14 < 2e-16

zone2 0.95 3.52 0.27 0.7874

zone3 -11.16 3.41 -3.28 0.0013

zone4 -23.67 3.55 -6.67 5.2e-10

Residual standard error: 9.08 on 143 degrees of freedom

Multiple R-squared: 0.513, Adjusted R-squared: 0.502

F-statistic: 50.1 on 3 and 143 DF, p-value: <2e-16
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Design matrix

Rows of the design matrix X have a single 1 corresponding to the zone of the
observation, 0 for the others; and the actual value of topsoil log10-clay. The interaction
model also has the product.

Additive model:
(Intercept) zone2 zone3 zone4 Clay1

1 1 1 0 0 72

2 1 1 0 0 71

3 1 0 0 0 61

4 1 0 0 0 55

5 1 1 0 0 47

Interaction model:
(Intercept) zone2 zone3 zone4 Clay1 zone2:Clay1 zone3:Clay1

1 1 1 0 0 72 72 0

2 1 1 0 0 71 71 0

3 1 0 0 0 61 0 0

4 1 0 0 0 55 0 0

5 1 1 0 0 47 47 0

zone4:Clay1

1 0

2 0

3 0

4 0

5 0
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Model summary – additive

Call:

lm(formula = Clay5 ~ zone + Clay1)

Residuals:

Min 1Q Median 3Q Max

-24.09 -2.99 0.15 3.14 13.89

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.3244 2.9054 6.65 5.8e-10

zone2 5.6945 2.1060 2.70 0.0077

zone3 2.2510 2.1831 1.03 0.3043

zone4 -0.6594 2.5365 -0.26 0.7953

Clay1 0.7356 0.0452 16.26 < 2e-16

Residual standard error: 5.39 on 142 degrees of freedom

Multiple R-squared: 0.83, Adjusted R-squared: 0.825

F-statistic: 173 on 4 and 142 DF, p-value: <2e-16

About four-fifths (0.825) of the variability in subsoil clay is explained by the zone in which
the observation was made and the observed topsoil clay content.

Zones 2 is the only one that differs significantly from Zone 1; it has an average of 5.69%
more clay.
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Model summary – interaction

Call:

lm(formula = Clay5 ~ zone * Clay1)

Residuals:

Min 1Q Median 3Q Max

-24.048 -2.883 0.515 2.889 13.233

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5362 6.4093 2.27 0.025

zone2 10.3477 6.9759 1.48 0.140

zone3 12.2331 6.9145 1.77 0.079

zone4 -1.8272 6.8954 -0.26 0.791

Clay1 0.8343 0.1265 6.59 8.2e-10

zone2:Clay1 -0.0955 0.1411 -0.68 0.500

zone3:Clay1 -0.2703 0.1513 -1.79 0.076

zone4:Clay1 0.2471 0.1877 1.32 0.190

Residual standard error: 5.24 on 139 degrees of freedom

Multiple R-squared: 0.842, Adjusted R-squared: 0.834

F-statistic: 106 on 7 and 139 DF, p-value: <2e-16

Somewhat more (0.834 vs. 0.825) of the variability in subsoil clay is explained by the
interaction model vs. the additive model. The Zone3:Topsoil clay interaction is significant.
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Comparing models
Analysis of Variance Table

Model 1: Clay5 ~ zone * Clay1

Model 2: Clay5 ~ zone + Clay1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 139 3813

2 142 4118 -3 -305 3.7 0.013

Analysis of Variance Table

Model 1: Clay5 ~ zone + Clay1

Model 2: Clay5 ~ zone

Res.Df RSS Df Sum of Sq F Pr(>F)

1 142 4118

2 143 11782 -1 -7664 264 <2e-16

Analysis of Variance Table

Model 1: Clay5 ~ zone + Clay1

Model 2: Clay5 ~ Clay1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 142 4118

2 145 4689 -3 -571 6.57 0.00035

The interaction model is somewhat better than the additive model.

The additive model is much better than the zone-only model, and somewhat better than
the topsoil clay-only model.
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Interaction mixed model: Actual vs. fits
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Interaction mixed model: Regression diagnostics
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One very badly-modelled observation! Quite unusual: subsoil clay is well below the topsoil
clay. Observational error (mislabelled sample boxes)?

[1] "Observation 145: Actual: 23 %; Fitted: 47 %; Located in zone 2 ; topsoil clay: 30 %"
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Visualizing the additive model

Parallel regression

� same slope on continuous predictor

� different intercepts per category on categorical predictor.

Does not allow a different response per category, only a different level.
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Additive model: parallel regression
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Slopes: parallel: 0.736 ; univariate: 0.829

   AIC: parallel: 919 ; univariate: 932

Pr(>F) parallel is not better: 0.00035

zone 1
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zone 4

Clearly the common slope is not appropriate for Zone 4.

D G Rossiter



Correlation, Regression, etc. 165

Visualizing the interaction model

Non-parallel regression

� may have different slopes on continuous predictor, per category

� different intercepts per category.

Allows different responses per category, and different levels.
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Interaction model: different slopes per category
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Subsoil vs. topsoil clay, by zone

Slope of regression
zone 1 : 0.834
zone 2 : 0.739
zone 3 : 0.564
zone 4 : 1.081
overall: 0.829

Zone 4 has a much steeper slope (and lower overall values); these are low-clay Acrisols, vs.
the other zones with medium- to high-clay Ferralsols.
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Topic: Robust methods

If the assumptions of linear regression are violated, what do we do?

1. Violations of linearity: linearize, or non-linear methods

2. Residuals not normally-distributed, dependence of residual on fit

(a) Non-linearity: see above
(b) A few poorly-modelled observations; especially high leverage (influential):

robust methods.

3. Variance differs across the range: heteroscedascity: variance-stabilizing
transformation

4. Not a single relation through the range: piecewise or local regression

Robust or resistant methods: good performance even if contamination from another
process.

D G Rossiter
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Robust regression

This fits a regression to the“good”observations in a dataset.

The regression estimator has a high breakdown point: how many “bad” points there have
to be to distort the equation.

There are many options; here we use the default for the lqs function of the MASS R
package.

Reference: Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S
(Fourth ed.). New York: Springer-Verlag.
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Anscombe example

Compare the noisy-linear with the linear+single outlier Anscombe examples:
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Linear: Slope: 0.4997
Linear, without outlier: Slope: 0.3454

(recall: true slope is 0.5)
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Robust fit

Objective: fit the relation with the outlier automatically.

Minimization criterion: sum of the floor(n/2) + floor((p+1)/2) smallest squared
residuals (n observations, p predictors).

[1] "Coefficients for least-squares fit:"

(Intercept) x3

3.00245 0.49973

[1] "Coefficients for least-squares fit without outlier:"

(Intercept) x3

4.00565 0.34539

[1] "Coefficients for resistant fit:"

(Intercept) x3

4.010 0.345

Note resistant fit very close to fit with only “good” points; automatically more-or-less
ignores the outlier.
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Visualize robust fit
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Robust: Slope: 0.345
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Local regression

All the methods presented so far assume one relation (linear or otherwise) over the entire
range of the predictor.

Another possibility is local regression: fitting in pieces.

Many methods, with variable amounts of smoothing based on the span, i.e. the
proportion of the range to consider for each piece.

Here we use the default for the lowess function of the R stats package, which uses
iterated weighted least squares.
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Example of local regression
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Cameroon TCP: Subsoil vs. topsoil clay %

Linear fit: dashed; Local fit: solid

Linear (span = 1)
Span: 2/3 (default)
Span: 1/2

Notice how this adjusts for the high subsoil/topsoil ratios in zone 4 (blue).
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Conclusion

Modelling is not simple . . .

D G Rossiter
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