Making a soils map from a geopedological map

D G Rossiter Soil Science Division February 2001

Starting point

A geopedological map

- API with delineations grouped in map units
- A hierarchical geopedological legend for the map units, e.g.
 - Pi: Piedmont
 - Pi2: Fan
 - Pi21: Alluvium
 - Pi213: apex
- ... or similar names in another API scheme

Ending point

- Same map units and delineations...
- ... but with information about the soils that occur in them, e. g.
 - "Dystri-skeletic Cambisols, gravely silt loam, gently sloping"

3

Naming soil map units

•1. Type of map unit:

- degree of homogeneity (homogeneous vs. compound): how many 'different' soils occurs?
- (in the case of compound): pattern of the different soils

•2. Names of soils in the map unit

 referring to a classification system and/or local names

Soil classes

Central concept

• 'modal pedon'

Limits of properties

 controls which pedons are allowed into the class

5

Higher-level classes

National or world classification system

- World Reference Base (WRB)
- Soil Taxonomy (US, applied elsewhere)
- Mückenhausen (D), Référential pédologique (F) etc.
- •Locally-defined higher classes
 - families, forms (groups of series)

Detailed classes: The Soil Series

A grouping of pedons that are 'similar enough' in their:

- characteristics
- behaviour in the landscape
- site features, field morphology

 Therefore, they act 'similarly enough' for all practical land uses

Three views of the soil series

Field

 easily recognisable and mappable by the experienced field soil surveyor

Properties

• a natural and restricted range

Interpretation

 the information carrier for information to the land user

Correlation of a series to higher-level classes

- The central concept of the series is classified into ('correlated to') a higher-level class
 - If not, the classification system has a hole
 - We classify the 'representative' pedon
- Some pedons of the series may be correlated to other classes

Example (ISRIC)

- Mappable series is correlated to Hyperdystri-Umbric Andisols
- Some pedons mapped in the series correlate to Hyperdystri-vitric Cambisol
 - E.g., if the permitted thickness within the series of the andic Ah is 25 to 35cm
 - ≥ 30 : Andisols; <30 Cambisols
 - Behaviour, landscape relations etc. are 'similar enough'
 - Splitting the series would be un-natural

Similar soils

- ...with respect to a named soil
- Allow simpler names, avoid too much irrelevant (to user) detail
- Criteria:
 - occur in intimate association on landscape
 - alike in most properties
 - share diagnostic (class) limits
 - do not affect interpretations 'too much'

Dissimilar soils

- ...with respect to a named soil
- Either:
 - occur on other landscape positions, or
 - differ in more than a few properties, or
 - do not share diagnostic limits, or
 - taken as a whole, behave differently

Example

 long, thin poorly-drained depressions (drainage ways) within a broad well-drained terrace

Limiting vs. non-limiting

- Applies to dissimilar soils
 - ... with respect to the named soil
- Limiting: less suited to major land uses
- Depends on purpose of survey
- Not such a useful concept for multi-purpose surveys

Homogeneous vs. compound soil map units

Homogeneous

- can be managed as a unit
- there may be some contrasting soils, but not enough to affect most management decisions

Compound

 At least two contrasting components that must be managed differently

Criteria for homogeneous soil map units - 1

- Based on estimates of the proportion of different kinds of pedons in the map unit
- statistical sampling; problems:
 - often biased location of samples
 - small number of samples wide confidence limits
- geomorphic analysis
 - detailed API within map units
 - measurement of detailed areas

Criteria for homogeneous soil map units - 2

Limits

- ≥75% in named soil or similar
- ≥50% in named soil
- ≤15% dissimilar, limiting pedons (all)
- ≤10% dissimilar, limiting pedons (any one class)
- Then called a 'consociation'
 - and named for one soil class

Compound map units (1)

Association

- components occur in a predictable landscape relation
- can be mapped separately at a 'realistic' larger scale

USA from 1:24 000 (MLA 2.3ha) to
 1:12 000 (MLA 0.6ha)

Basic idea

• easy to locate the components in the field

Compound map units (2)

Complex

• fails the 'predictable' test for assocation

Basic idea

- contrasting soils occur in intimate association
- they have to be managed together, i.e. both have to be taken into account at the same time

Strategy of GP soil resource inventory

- Stratify landscape in a four-level hierarchical legend
 - API
 - Field checks to verify API lines, but not by examining soils
- Characterise strata (API map units) in terms of their soil components
 - Field sampling
- Name strata by their soil components

Field sampling

- Sample areas (blocks) selected on AP
- Field visit to sample area; selection of representative site for each unit
- Full description and sampling of pedon at representative site

pit or mini-pit; laboratory samples

- Limited description of augerings near the sampled pedon
 - some idea of local variation

Correlation of the API map unit

- List the representative pedons from field sampling
- Select a 'most representative' one
- See if others are similar enough for a consociation
- If not, select a second 'most representative' from the remaining population, etc.
- Name map unit from representatives

Extrapolation

• Check API in non-sampled areas

 Possibly some widely-spaced supplementary samples

The resulting legend

- structured with GP units
- named as soil units
- serves two purposes
- Example:
 - [using series names] 'Pi213': Piedmont, apex of alluvial fan: Chenango
 - [using taxonomic names] 'Pi213': Piedmont, apex of alluvial fan: Dystri-skeletic Cambisols

Phases

- Characteristics of the map unit not included in the soil name
 - Detailed soil characteristics of the surface layer
 - texture, thickness, gravels
 - Detailed internal soil characteristics not included in the class definition
 - depth, compaction
 - External characteristics important for land use
 - slope, position, aspect; artificial drainage
- Important for interpretations and use

Use of phases in map unit names

- Locally-defined
 - not part of the classification system
- Consistently-mappable
- Important differences
- Examples
 - Degree of current erosion ('severely eroded')
 - Slope and landform (''3-8%, convex')
 - Surface ('gravely silt loams')
 - Artificially drained ('drained')

Map scale

Basic issue

What can be shown on a map at a given scale?

Inverse problem

• What scale is needed to show a given level of detail?

Conceptual issue

What kind of map units occur at different scales?

Map scale: preliminary definitions

- Ground vs. map measurements
 - Linear
 - ground meters ground km
 - map meters map mm or cm
 - Area
 - ground m^2 ground ha (10⁴ m²), km² (10⁶ m²)
 - $\text{ map } m^2 \text{ map } cm^2 (10^{-4} \text{ m}^2), \text{ mm}^2 (10^{-6} \text{ m}^2)$
 - Area = Linear²
 - 2x scale 4x area, 10x scale 100x area

Showing map scale

Scale ratio

• 1:50 000

representative fraction (RF)

• $1/50000 = 0.00002 = 2 \times 10^{-5}$

•scale number (SN)

• 50 000

Location accuracy

Maximum location accuracy

- 0.25mm (manual)
- 0.10mm (automatic)
- Example: 1:50 000
 - 12.5m manual
 - 5m automatic

Legible delineations

Minimum legible delineation (MLD)

- Arbitrary; 0.4cm² = 40mm²
- Other authors use 0.25cm² = 25mm²

Optimum delineation (OLD)

- 4x MLD
- Narrow delineations
 - ≥3mm

Legible areas

MLD, OLD converted to ground area MLD, OLD MLA, OLA Simple formula for MLA: (SN / 1000)² / 250 Example: 1:50 000 MLA 10ha, OLA 40ha Narrowest 150m

Spot and line symbols

Purpose

 To represent contrasting soils, even if the map scale can't show them as polygons

Lines represent narrow delineations

- implicit width <3mm
- Spots represent small areas
 - implicit size <40mm²

Actual maps

- Distribution of delineation sizes
 - quartiles, minimum
 - average size delineation (ASD)
- Index of Maximum Reduction (IMR)
 - "the factor by which the scale of the map could be reduced before the ASD would become equal to the MLD"
 - IMR = $\sqrt{(ASD / MLD)} = \sqrt{(ASA / MLA)}$
 - At IMR=1, the ASA = MLA
 - Ideal IMR=2, so that ASA=OLA

Cartographic & categorical detail

Cartographic

- how detailed is the pattern of polygons
- controlled by the scale

Categorical

- how detailed are the descriptions of the entities (here, soil units)
- detailed = limited range of properties
- Should correspond

Typical soil maps

- Detailed
 - 1:25 000; mostly consociations of phases of soil series
- Semi-detailed
 - 1:50 000; mostly associations of phases of soil families, some consociations of higher-level groups (not as useful)
- Reconnaissance
 - 1:250 000; mostly associations of higher-level groups

