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1 Curve fitting

This is a small introduction to curve fitting in the R environment for sta-
tistical computing and visualisation [3, 6] and its dialect of the S language.
R provides a sophisticated environment, which gives the user more insight
and control than provided by commerical or shareware “push the button”
programs such as CurveFit.

Note: The code in these exercises was tested with Sweave [5, 4] on R
version 3.2.4 (2016-03-10), stats package Version: 3.2.4, running on Mac OS
X 10.11.4. The text and graphical output you see here was automatically
generated and incorporated into LATEX by running actual code through R and
its packages. Then the LATEX document was compiled into the PDF version
you are now reading. Your output may be slightly different on different
versions and on different platforms.

2 Fitting intrinsically linear relations

Relations that are expected to be linear (from theory or experience) are
usually fit with R’s lm“linear model”method, which by default uses ordinary
least squares (OLS) to minimize the sum of squares of the residuals. This is
covered in many texts and another tutorial of this series [7].

However, linear relations with some contamination (e.g. outliers) may be
better fit by robust regression, for example the lmRob function in the robust
package.

After fitting a linear model, the analyst should always check the regression
diagnostics appropriate to the model, to see if the model assumptions are
met. For example, the ordinary least squares fit to a linear model assumes,
among others: (1) normally-distributed residuals; (2) homoscedascity (vari-
ance of the response does not depend on the value of the predictor); (3)
serial independence (no correlation between responses for nearby values of
the predictor).

3 Fitting linearizable relations

Some evidently non-linear relations can be linearized by transforming either
the response or predictor variables. This should generally be done on the
basis of theory, e.g. an expected multiplicative effect of a causitive variable
would indicate an exponential response, thus a logarithmic transformation
of the response variable.

An example of a log-linear model is shown in §4.3.

4 Non-linear curve fitting

Equations that can not be linearized, or for which the appropriate lineariza-
tion is not known from theory, can be fitted with the nls method, based on
the classic text of Bates and Watts [2] and included in the base R distribu-
tion’s stats package.
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You must have some idea of the functional form, presumably from theory.
You can of course try various forms and see which gives the closest fit, but
that may result in fitting noise, not model.

4.1 Fitting a power model

We begin with a simple example of a known functional form with some noise,
and see how close we can come to fitting it.

Task 1 : Make a data frame of 24 uniform random variates (independent
variable) and corresponding dependent variable that is the cube, with noise.
Plot the points along with the known theoretical function. •

So that your results match the ones shown here, we use the set.seed func-
tion to initialize the random-number generator; in practice this is not done
unless one wants to reproduce a result. The choice of seed is arbitrary. The
random numbers are generated with the runif (uniform distribution, for the
independent variable) and rnorm (normal distribution, for the independent
variable) functions. These are then placed into a two-column matrix with
named columns with the data.frame function.

> set.seed(1485)

> len <- 24

> x <- runif(len)

> y <- x^3 + rnorm(len, 0, 0.06)

> ds <- data.frame(x = x, y = y)

> str(ds)

'data.frame': 24 obs. of 2 variables:

$ x: num 0.838 0.5285 0.8344 0.0721 0.9242 ...

$ y: num 0.5448 0.1412 0.6284 0.0106 0.7139 ...

> plot(y ~ x, main = "Known cubic, with noise")

> s <- seq(0, 1, length = 100)

> lines(s, s^3, lty = 2, col = "green")
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Suppose this is a dataset collected from an experiment, and we want to
determine the most likely value for the exponent. In the simplest case, we
assume that the function passes through (0,0); we suppose there is a physical
reason for that. The power model is then

yi = (xi)m + εi (1)

where m is the exponent and the errors εi are assumed to be identically and
independently distributed (“i.i.d”), generally as normally-distributed with
zero mean and some variance: ε ∼N (0, σ2).

Task 2 : Fit a power model, with zero intercept, to this data. •

We use the workhorse nls function, which is analogous to lm for linear
models. This requires at least:

1. a formula of the functional form;

2. the environment of the variable names listed in the formula;

3. a named list of starting guesses for these.

We’ll specify the power model: y ~ I(x^power) and make a starting guess
that it’s a linear relation, i.e. that the power is 1.

Note: Note the use of the I operator to specify that the ^ exponentiation
operator is a mathematic operator, not the ^ formula operator (factor cross-
ing). In this case there is no difference, because there is only one predictor,
but in the general case it must be specified.

We use the optional trace=T argument to see how the non-linear fit con-
verges.

> m <- nls(y ~ I(x^power), data = ds, start = list(power = 1),

+ trace = T)
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1.814289 : 1

0.3012573 : 2.050361

0.08280959 : 2.881157

0.07643193 : 3.091093

0.07643191 : 3.091473

0.07643191 : 3.091458

> class(m)

[1] "nls"

The nls function has returned an object of class nls, for which many further
functions are defined.

Task 3 : Display the solution. •

The generic summary method specializes to the non-linear model:

> summary(m)

Formula: y ~ I(x^power)

Parameters:

Estimate Std. Error t value Pr(>|t|)

power 3.091 0.161 19.2 1.17e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05765 on 23 degrees of freedom

Number of iterations to convergence: 5

Achieved convergence tolerance: 8.035e-07

> summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)

power 3.091458 0.161011 19.20028 1.174765e-15

We can see that the estimated power is 3.091 ± 0.161

The standard error of the coefficient shows how uncertain we are of the
solution.

Task 4 : Plot the fitted curve against the known curve. •

We use the predict method to find the function value for the fitted power
function along the sequence [0,0.01,0.02, . . . ,0.99,1], and use these to plot
the fitted power function.

> power <- round(summary(m)$coefficients[1], 3)

> power.se <- round(summary(m)$coefficients[2], 3)

> plot(y ~ x, main = "Fitted power model", sub = "Blue: fit; green: known")

> s <- seq(0, 1, length = 100)

> lines(s, s^3, lty = 2, col = "green")

> lines(s, predict(m, list(x = s)), lty = 1, col = "blue")

> text(0, 0.5, paste("y =x^ (", power, " +/- ", power.se,

+ ")", sep = ""), pos = 4)
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Despite the noise, the fit is quite close to the known power.

Task 5 : Determine the goodness of the fit. •

We compute the residual sum-of-squares (lack of fit) and the complementR2

of its proportion to the total sum-of-squares (coefficient of determination,
“R2”):

R2 = 1− RSS
TSS

(2)

> (RSS.p <- sum(residuals(m)^2))

[1] 0.07643191

> (TSS <- sum((y - mean(y))^2))

[1] 2.172195

> 1 - (RSS.p/TSS)

[1] 0.9648135

We can compare this to the lack-of-fit to the known cubic, where the lack of
fit is due to the noise:

> 1 - sum((x^3 - y)^2)/TSS

[1] 0.9642825

They are hardly distinguishable; the known cubic will not necessarily be
better, this varies with each simulation.

Another way to evaluate the success of a model fit is with Akaike’s Informa-AIC
tion Criterion (AIC) [1], defined as:
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AIC = −2 log(L)+ 2k (3)

where k is the number of degrees of freedom used in the model and L is
thevalue of the likelihood function, i.e., the likelihood of the observations
having been generated by the assumed model.

The likelihood function is:likelihood

L(θ;Z) =
N∏
i=1

gθ(zi) (4)

where Z = (z1, z2, . . . zN) are the N observed values, θ is the vector of
parameters of the assumed model, and gθ is the model equation with the
specified parameters. In this example θ has two elements, the power m and
the variance of the errors σ2, so that gθ(zi) = (xi)m+N (0, σ2). As m is
varied, so is gθ(zi) of each observation, and hence the likelihood. The values
of (m,σ2) at which the product of the gθ(zi) is maximized are called the
maximum likelihood values of the parameters, and provides a general method
for fitting equations.

Since the likelihood in the AIC formula has a negative sign, the smaller (with
sign) the better.

Task 6 : Compute the AIC for this model fit. •

This is computed with (surprise!) the AIC function:

> AIC(m)

[1] -65.87676

This has no interpretation by itself, because (1) it depends on the set of
observations; (2) the AIC is unique up to a constant. However, the AIC is
useful to compare models, see below.

4.2 Fitting to a functional form

The more general way to use nls is to define a function for the right-hand
side of the non-linear equation. We illustrate for the power model, but
without assuming that the curve passes through (0,0).

Task 7 : Fit a power model and intercept. •

First we define a function, then use it in the formula for nls. The function
takes as arguments:

1. the input vector, i.e. independent variable(s);

2. the parameters; these must match the call and the arguments to the
start= initialization argument, but they need not have the same names.
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> rhs <- function(x, b0, b1) {

+ b0 + x^b1

+ }

> m.2 <- nls(y ~ rhs(x, intercept, power), data = ds, start = list(intercept = 0,

+ power = 2), trace = T)

0.3299172 : 0 2

0.09528284 : 0.05152784 3.22261047

0.06804034 : 0.03275645 3.46465245

0.0679837 : 0.0300599 3.4248749

0.06798214 : 0.03042144 3.43209077

0.06798209 : 0.03035352 3.43079872

0.06798209 : 0.03036561 3.43103066

0.06798209 : 0.03036343 3.43098899

> summary(m.2)

Formula: y ~ rhs(x, intercept, power)

Parameters:

Estimate Std. Error t value Pr(>|t|)

intercept 0.03036 0.01898 1.60 0.124

power 3.43099 0.29164 11.77 5.81e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05559 on 22 degrees of freedom

Number of iterations to convergence: 7

Achieved convergence tolerance: 5.512e-06

> plot(ds$y ~ ds$x, main = "Fitted power model, with intercept",

+ sub = "Blue: fit; magenta: fit w/o intercept; green: known")

> abline(h = 0, lty = 1, lwd = 0.5)

> lines(s, s^3, lty = 2, col = "green")

> lines(s, predict(m.2, list(x = s)), lty = 1, col = "blue")

> lines(s, predict(m, list(x = s)), lty = 2, col = "magenta")

> segments(x, y, x, fitted(m.2), lty = 2, col = "red")
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This example shows the effect of forcing the equation through a known point,
in this case (0,0). Since the model has one more parameter, it will by
definition fit better near the origin. However, in this case it is fitting noise,
not structure.

Task 8 : Compare the fit with the known relation and the power-only model.
•

> (RSS.pi <- sum(residuals(m.2)^2))

[1] 0.06798209

> (r2.pi <- (1 - (RSS.pi/TSS)))

[1] 0.9687035

> (r2.p <- 1 - (RSS.p/TSS))

[1] 0.9648135

> (r2.3 <- 1 - sum((x^3 - y)^2)/TSS)

[1] 0.9642825

In this case the model with intercept explains more of the variation in the
observations.

The unadjusted R2 can be empirically adjusted to account for the numberadjusted R2

of model parameters p (more parameters allow a closer fit) and the num-
ber of observations n (more observations allow more parameters without
overfitting):

R2
adj = 1−

[
(n− 1)
(n− p) · (1− R

2)
]

(5)

For the power model and the known cubic there is only one parameter (p =
1), so the adjustment expression (n − 1)/(n − p) = 1 and there is no
adjustment needed. However for the model with both power and intercept,
there is an additional parameter (the intercept), and we see its effect in
allowing the curve to fit better near the origin.

Task 9 : Compute the adjusted R2 of the with-intercept model. •

The dim function gives the dimensions of an array; here the first dimension
is the number of rows, i.e., observations. The length function gives the
number of elements in a vector, here the coefficients vector, extracted with
the coefficients function.

> (n <- dim(ds)[1])

[1] 24

> (p <- length(coefficients(m.2)))
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[1] 2

> (r2.adj.pi <- 1 - (((n - 1)/(n - p)) * (1 - r2.pi)))

[1] 0.9672809

> r2.pi

[1] 0.9687035

> r2.pi - r2.adj.pi

[1] 0.001422568

Adding one parameter to even this small dataset results in very little ad-
justment to the R2.

Task 10 : Compare the two models (with and without intercept) with an
Analysis of Variance. •

> anova(m.2, m)

Analysis of Variance Table

Model 1: y ~ rhs(x, intercept, power)

Model 2: y ~ I(x^power)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 22 0.067982

2 23 0.076432 -1 -0.0084498 2.7345 0.1124

The Pr(>F) value is the probability that rejecting the null hypothesis (the
more complex model does not fit better than the simpler model) would be a
mistake; in this case since we know there shouldn’t be an intercept, we hope
that this will be high.

The use of adjusted R2 to compare nonlinear models was criticized by Spiess
and Neumeyer [8]; these authors recommend using the AIC.

Task 11 : Compare the two models (with and without intercept) by their
AIC. •

Note that comparaison by AIC is only valid if the models were fit on the
same data, since AIC is based on the likelihood of observing these data,
conditional on the assumed model.

> AIC(m.2)

[1] -66.68851

> AIC(m)

[1] -65.87676

The AIC of the model with intercept is in this case (i.e., with these observ-
tions) less (here, more negative), showing that it is a better model, even after
compensating for the additional parameter. We know this is not“true”, since
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the known model does not have an intercept. If you do this comparison with
other simulated values you will get different AIC values and in some cases a
different ranking of the models.

4.3 Fitting an exponential model

Looking at the scatterplot we might suspect an exponential relation. This
can be fit in two ways:

� linearizing by taking the logarithm of the response;

� with non-linear fit, as in the previous section.

The first approach works because:

y = ea+bx ≡ log(y) = a+ bx

Task 12 : Fit a log-linear model. •

The logarithm is not defined for non-positive numbers, so we have to add
a small offset if there are any of these (as here). One way to define this is
as the decimal 0.1,0.01,0.001 . . . that is just large enough to bring all the
negative values above zero. Here the minimum is:

> min(y)

[1] -0.03000078

and so we should add 0.1.

> offset <- 0.1

> ds$ly <- log(ds$y + offset)

> m.l <- lm(ly ~ x, data = ds)

> summary(m.l)

Call:

lm(formula = ly ~ x, data = ds)

Residuals:

Min 1Q Median 3Q Max

-1.1356 -0.1421 0.0578 0.2590 0.8064

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.3589 0.1813 -13.011 8.28e-12 ***

x 2.1554 0.2977 7.241 2.97e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4701 on 22 degrees of freedom

Multiple R-squared: 0.7044, Adjusted R-squared: 0.691

F-statistic: 52.43 on 1 and 22 DF, p-value: 2.966e-07

> plot(ds$ly ~ ds$x, xlab = "x", ylab = "log(y+.1)", main = "Log-linear fit")

> abline(m.l)

> text(0, 0.4, pos = 4, paste("log(y) = ", round(coefficients(m.l)[1],

+ 3), "+", round(coefficients(m.l)[2], 3)))
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log(y) =  −2.359 + 2.155

Here the adjusted R2 is 0.691, but this can not be compared to the non-
linear fit, because of the transformation. Neither can the AIC, here 35.79,
be compared, because the observations have different values before and after
the transformation.

Since this is a linear model, we can evaluate the regression diagnostics:

> par(mfrow = c(2, 2))

> plot(m.l)

> par(mfrow = c(1, 1))
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Clearly the log-linear model is not appropriate.

The second way is with nls.

Task 13 : Directly fit an exponential model. •

The functional form is y = ea+bx. A reasonable starting point is a = 0, b =
1, i.e. y = ex.

> m.e <- nls(y ~ I(exp(1)^(a + b * x)), data = ds, start = list(a = 0,

+ b = 1), trace = T)

53.5851 : 0 1

5.713618 : -1.073559 1.390495

0.5851148 : -2.232398 2.219397

0.1222333 : -3.397036 3.416349

0.09275322 : -4.006025 4.092473

0.09271058 : -4.016730 4.101149

0.09271053 : -4.015782 4.100066

0.09271053 : -4.015905 4.100206

0.09271053 : -4.015889 4.100188

> summary(m.e)$coefficients

12



Estimate Std. Error t value Pr(>|t|)

a -4.015889 0.2742684 -14.64219 7.976698e-13

b 4.100188 0.3094644 13.24930 5.801485e-12

> a <- round(summary(m.e)$coefficients[1, 1], 4)

> b <- round(summary(m.e)$coefficients[2, 1], 4)

> plot(y ~ x, main = "Fitted exponential function", sub = "Blue: fit; green: known")

> s <- seq(0, 1, length = 100)

> lines(s, s^3, lty = 2, col = "green")

> lines(s, predict(m.e, list(x = s)), lty = 1, col = "blue")

> text(0, 0.5, paste("y =e^ (", a, " + ", b, " * x)", sep = ""),

+ pos = 4)
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Here the goodness-of-fit can be compared directly to that for the power
model, since they both have one parameter and untransformed observations:

> RSS.p

[1] 0.07643191

> (RSS.e <- sum(residuals(m.e)^2))

[1] 0.09271053

> TSS

[1] 2.172195

> 1 - RSS.p/TSS

[1] 0.9648135

> 1 - RSS.e/TSS

[1] 0.9573194

The fit is not as good as for the power model, which suggests that the
exponential model is an inferior functional form.
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The AICs can also be compared, since the original observations are used in
both cases:

> AIC(m)

[1] -65.87676

> AIC(m.e)

[1] -59.2428

Clearly, the exponential model is much inferior.

4.4 Fitting a piecewise model

A big advantage of the nls method is that any function can be optimized.
This must be continuous in the range of the predictor but not necessariy
differentiable.

An example is the linear-with-plateau model sometimes used to predict crop
yield response to fertilizers. The theory is that up to some threshold, added
fertilizer linearly increases yield, but once the maximum yield is reached
(limited by light and water, for example) added fertilizer makes no difference.
So there are four parameters: (1) intercept: yield with no fertilizer; (2)
slope: yield increase per unit fertilizer added; (3) threshold yield: maximum
attainable; (4) threshold fertilizer amount: where this yield is attained.

Note that one parameter is redundant: knowing the linear part and the
threshold yield we can compute the threshold amount, or with the amount
the yield.

Task 14 : Define a linear-response-with-plateau function. •

We define the function with three parameters, choosing to fit the maxi-
mum fertilizer amount, from which we can back-compute the maximum yield
(plateau). We use the ifelse operator to select the two parts of the function,
depending on the threshold.

> f.lrp <- function(x, a, b, t.x) {

+ ifelse(x > t.x, a + b * t.x, a + b * x)

+ }

Task 15 : Generate a synthetic data set to represent a fertilizer experiment
with 0, 10, . . . 120 kg ha-1 added fertilizer, with three replications, with
known linear response y = 2 + 0.5x and maximum fertilizer which gives
response of 70 kg ha-1. •

In nature there are always random factors; we account for this by adding
normally-distributed noise with the rnorm function. Again we use set.seed

so your results will be the same, but you can experiment with other random
values.
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> f.lvls <- seq(0, 120, by = 10)

> a.0 <- 2

> b.0 <- 0.05

> t.x.0 <- 70

> test <- data.frame(x = f.lvls, y = f.lrp(f.lvls, a.0,

+ b.0, t.x.0))

> test <- rbind(test, test, test)

> set.seed <- 1040

> test$y <- test$y + rnorm(length(test$y), 0, 0.2)

> str(test)

'data.frame': 39 obs. of 2 variables:

$ x: num 0 10 20 30 40 50 60 70 80 90 ...

$ y: num 1.82 2.53 2.99 3.5 3.72 ...

In this example the maximum attainable yield is 5.5, for any fertilizer amount
from 70 on. No fertilizer gives a yield of 2 and each unit of fertilizer added
increases the yield 0.05 units. The noise represents the intrinsic error in field
experiments. Note that the amount of fertilizer added is considered exact,
since it is under the experimenter’s control.

Task 16 : Plot the experiment with the known true model. •

> plot(test$y ~ test$x, main = "Linear response and plateau yield response",

+ xlab = "Fertilizer added", ylab = "Crop yield")

> (max.yield <- a.0 + b.0 * t.x.0)

[1] 5.5

> lines(x = c(0, t.x.0, 120), y = c(a.0, max.yield, max.yield),

+ lty = 2)

> abline(v = t.x.0, lty = 3)

> abline(h = max.yield, lty = 3)
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Although it’s not needed for this example, the replication number should be
added to the dataframe as a factor; we use the rep “replicate” function to
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create the vector of replication numbers, and then as.factor to convert to
a factor. The table function gives the count of each replicate.

> test$rep <- as.factor(rep(1:3, each = length(test$y)/3))

> str(test)

'data.frame': 39 obs. of 3 variables:

$ x : num 0 10 20 30 40 50 60 70 80 90 ...

$ y : num 1.82 2.53 2.99 3.5 3.72 ...

$ rep: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...

> table(test$rep)

1 2 3

13 13 13

The different replications have slightly different mean yields, due to random
error; we see this with the by function to split a vector by a factor and then
apply a function per-factor; in this case mean:

> by(test$y, test$rep, mean)

test$rep: 1

[1] 4.375666

----------------------------------------------------

test$rep: 2

[1] 4.444215

----------------------------------------------------

test$rep: 3

[1] 4.37456

Task 17 : Fit the model to the experimental data. •

Now we try fit the model, as if we did not know the parameters. Starting
values are from the experimenter’s experience. Here we say zero fertilizer
gives no yield, the increment is 0.1, and the maximum fertilizer that will
give any result is 50.

> m.lrp <- nls(y ~ f.lrp(x, a, b, t.x), data = test, start = list(a = 0,

+ b = 0.1, t.x = 50), trace = T, control = list(warnOnly = T,

+ minFactor = 1/2048))

29.55894 : 0.0 0.1 50.0

8.9431 : 2.04540088 0.04595019 60.87229119

0.8166921 : 2.02080700 0.04742582 74.01871968

0.8123844 : 2.01121237 0.04790556 73.54241857

0.8123836 : 2.01121237 0.04790556 73.54718832

> summary(m.lrp)

Formula: y ~ f.lrp(x, a, b, t.x)

Parameters:

Estimate Std. Error t value Pr(>|t|)

a 2.011212 0.055984 35.92 <2e-16 ***

b 0.047906 0.001338 35.80 <2e-16 ***

t.x 73.547188 1.491585 49.31 <2e-16 ***

---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1502 on 36 degrees of freedom

Number of iterations to convergence: 4

Achieved convergence tolerance: 1.609e-09

> coefficients(m.lrp)

a b t.x

2.01121237 0.04790556 73.54718832

Task 18 : Evaluate the goodness-of-fit with the unadjusted and adjusted
R2. •

> (RSS.lrp <- sum(residuals(m.lrp)^2))

[1] 0.8123836

> (TSS <- sum((test$y - mean(test$y))^2))

[1] 61.20578

> (r2.m.lrp <- 1 - (RSS.lrp/TSS))

[1] 0.986727

> (n <- dim(test)[1])

[1] 39

> (p <- length(coefficients(m.lrp)))

[1] 3

> (r2.adj.m.lrp <- 1 - (((n - 1)/(n - p)) * (1 - r2.m.lrp)))

[1] 0.9859896

> r2.m.lrp - r2.adj.m.lrp

[1] 0.0007373882

The fit is quite close to the known true values. Note that the summary gives
the standard error of each parameter, which can be used for simulation or
sensitivity analysis. In this case all “true” parameters are well within one
standard error of the estimate.

Task 19 : Plot the experiment with the fitted model and the known model.
•

> plot(test$y ~ test$x, main = "Linear response and plateau yield response",

+ xlab = "Fertilizer added", ylab = "Crop yield")

> (max.yield <- a.0 + b.0 * t.x.0)

[1] 5.5
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> lines(x = c(0, t.x.0, 120), y = c(a.0, max.yield, max.yield),

+ lty = 2, col = "blue")

> abline(v = t.x.0, lty = 3, col = "blue")

> abline(h = max.yield, lty = 3, col = "blue")

> (max.yield <- coefficients(m.lrp)["a"] + coefficients(m.lrp)["b"] *

+ coefficients(m.lrp)["t.x"])

a

5.534531

> lines(x = c(0, coefficients(m.lrp)["t.x"], 120), y = c(coefficients(m.lrp)["a"],

+ max.yield, max.yield), lty = 1)

> abline(v = coefficients(m.lrp)["t.x"], lty = 4)

> abline(h = max.yield, lty = 4)

> text(120, 4, "known true model", col = "blue", pos = 2)

> text(120, 3.5, "fitted model", col = "black", pos = 2)

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

0 20 40 60 80 100 120

2
3

4
5

Linear response and plateau yield response

Fertilizer added

C
ro

p 
yi

el
d

known true model

fitted model

The AIC of this model can also be calculated and compared to, for example,
a second-order power model, often used to model response curves:

> m.quad <- lm(y ~ I(x^2) + x, data = test)

> summary(m.quad)

Call:

lm(formula = y ~ I(x^2) + x, data = test)

Residuals:

Min 1Q Median 3Q Max

-0.43532 -0.13110 0.00171 0.13853 0.45238

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.828e+00 9.339e-02 19.58 < 2e-16 ***

I(x^2) -3.149e-04 2.904e-05 -10.84 6.82e-13 ***

x 6.907e-02 3.616e-03 19.10 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 0.2251 on 36 degrees of freedom

Multiple R-squared: 0.9702, Adjusted R-squared: 0.9685

F-statistic: 586.1 on 2 and 36 DF, p-value: < 2.2e-16

> summary(m.quad)$adj.r.squared

[1] 0.9685497

> r2.adj.m.lrp

[1] 0.9859896

> r2.adj.m.lrp - summary(m.quad)$adj.r.squared

[1] 0.01743988

> AIC(m.quad)

[1] -0.7694702

> AIC(m.lrp)

[1] -32.30522

The linear-response with plateau model is much superior to the quadratic
for this set of observations; this difference is more clearly shown with AIC
rather than with the adjusted R2.
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