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Topics – Part 1

1. The R Project for Statistical Computing: what and why?

2. Installing R and RStudio

3. Interacting with R

4. The S language: expressions, assignment, functions

5. The R help system, R manuals, on-line R help

6. Finding, installing and loading contributed packages

7. Finding and loading example datasets
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The R Project for Statistical Computing: what and why?

• R is an open-source environment for statistical computing, data manipulation
and visualisation;

• Statisticians have implemented over 2 000 specialised statistical procedures as
contributed packages;

• R and its packages are freely-available over the internet;

• R runs on many operating systems, including Microsoft Windows, Unix© and
derivatives Mac OS X and Linux;

• R is fully programmable, with its own modern computer language, S;

• Repetitive procedures can be automated by user-written scripts, functions or
packages;

• . . .
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• . . .

• R is supported by comprehensive technical documentation, user-contributed tutorials
and textbooks; these all have freely-available R code

• R is the lingua franca (n�Ý) of the computational statistics world.

• R can import and export in MS-Excel, text, fixed and delineated formats (e.g. CSV),
with databases . . . ;

• R is a major part of the open source and reproducible research movement for
transparent and honest science.

D G Rossiter
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Installing R and RStudio

• R is the the computing environment; RStudio is an Integrated Development
Environment (IDE) which makes using R easier

• Install R first; it can run outside RStudio

– The Comprehensive R Archive Network (CRAN): http://cran.r-project.org/
to download R, packages and documentation

– link “Download R for . . . ” (Linux, Mac OS/X, Windows)
– Install the “base” version

• Install RStudio from its home page http://www.rstudio.com/

– link “Download RStudio” desktop open-source version

• Start RStudio; it will automatically start R.

D G Rossiter

http://cran.r-project.org/
http://www.rstudio.com/


Introduction to R 5

RStudio Features (1/2)

• R console

– enter R commands here, see text output

• Code editor

– write one or more R commands, pass the commands to the console and see the text
output there

– advantage: can edit and re-run
– can save the script to reproduce the analysis

• Graphics viewer (“Plots”)

– shows output of commands that produce figures
– can save for printing or inclusion in reports

D G Rossiter
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RStudio Features (2/2)

• Workspace viewer

– shows the objects in your workspace

• File manager

• History viewer

• Package manager

– install (from CRAN) and load (in your workspace) additional packages

• Integrated help system

• Project manager

– can switch between data analysis projects, each in its own directory

D G Rossiter
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RStudio Screenshot
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Basic interaction with the R console

• > is a prompt: R is waiting for input:

>

• You can type directly after the prompt; press the Enter to submit the command to R

• If a command is not syntactically-complete, R will show the continuation prompt:

+

• When the command is complete, R will execute

• Better: type a command in the code editor and click the Run button or press
Alt+Enter to pass the command to the console

• Text output (if any) will appear in the console; figures will appear the graphics window

D G Rossiter
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First interaction with the console

Draw 100 normally-distributed random numbers (µ = 0, σ 2 = 1), summarize them:

> summary(rnorm(100))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.36000 -0.85350 -0.06113 -0.14620 0.58610 2.47700

Draw another set of 100 and graph
them as a histogram:

> hist(rnorm(100))

Your results will be different – why?
D G Rossiter
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The S language

1. Origin; R vs. S

2. Expresssions

3. Assignment and the workspace

4. Functions

D G Rossiter
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Origin of S

• The language implemented in the R environment is S

• Developed at Bell Laboratories (USA) in the 1980’s (John Chambers etc.)

• Designed for“programming with data”, including statistical analysis

• Line between “user” and “programmer” purposely blurred

• Syntax similar to ALGOL-like programming languages (C, Pascal, and Java . . . )

• Operators,functions and methods are generally vectorized; vector and matrix
operations are expressed naturally

• Statistical models specified with a standard notation

D G Rossiter
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Origin of R

• 1990–1994 Ross Ihaka, Robert Gentleman at Univ. Auckland (NZ), for own teaching
and research

• Syntax from S, internals from Scheme (a LISP-like functional programming language)

• 1997 Kurt Hornik and Fritz Leisch establishe the CRAN (Comprehensive R Action
Network) archive at TU Vienna

• 2000 V1.0 official release

• R Core Team of developers (Ripley, Dalgaard, Lumley, Tierney, Plummer . . . )

• S3 and then S4 object-oriented systems (V2, V3)

• Independent package developers

• 2015 Microsoft aquires Revolution Analytics
https://mran.revolutionanalytics.com – still open-source but “industrial-level”
support for Big Data projects

D G Rossiter
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Expressions

R can be used as a command-line calculator; these S expressions can then be used
anywhere in a statemnt.

> 2*pi/360

[1] 0.0174533

> 3 / 2^2 + 2 * pi

[1] 7.03319

> ((3 / 2)^2 + 2) * pi

[1] 13.3518

D G Rossiter
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Assignment

Results of expressions can be saved as objects in the workspace.

There are two (equivalent) assignment operators:

> rad.deg <- 2*pi/360

> rad.deg = 2*pi/360

By default nothing is printed; but all of these:

> (rad.deg <- 2*pi/360)

> rad.deg

> print(rad.deg)

give the same output:

[1] 0.0174533

D G Rossiter



Introduction to R 15

Workspace objects

• Create by assignment

• May be complex data structures (see ‘methods’)

– In the example below we use the c ‘catenate; build a chain’ function to build a vector

• List with ls ‘list’ or objects functions

• Delete with the rm (remove) function

> (heights <- c(12.2, 13.1, 11.9, 15.5, 10.9))

[1] 12.2 13.1 11.9 15.5 10.9

> ls()

[1] "heights"

> rm(heights); ls()

character(0)
D G Rossiter
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Functions and Methods

Most work in S is done with functions or methods:

1. Method or function name; any arguments between parentheses ( )

2. Argument list

(a) Required
(b) Optional, with defaults
(c) positional and/or named

These usually return some values, which can be complex data structures

D G Rossiter
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Example of a function call

Function name: rnorm (sample from a normal distribution)
Required argument: n: number of sampling units
Optional arguments: mean, sd

> rnorm(20)

[1] 0.388120 0.051022 -1.090701 0.155238 1.725087 2.011053 -2.122989 -0.685271

[9] -0.112195 0.876962 0.053067 -1.099789 0.299773 0.147167 -0.808183 -0.403877

[17] 1.173150 -1.557166 0.257684 -0.061434

> rnorm(20, mean=180)

[1] 180.99 180.89 180.64 181.64 179.45 179.90 179.04 179.62 178.94 180.66 179.35

[12] 180.16 179.31 179.66 178.05 180.07 181.58 179.37 179.08 180.21

> rnorm(20, mean=180, sd=10)

[1] 171.90 179.90 189.82 191.80 182.41 187.19 162.89 202.09 185.78 188.01 174.15

[12] 183.09 158.83 175.42 166.60 188.93 181.84 177.15 167.56 177.75

D G Rossiter
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The R help system, R manuals, on-line R help

1. R help

2. R manuals

3. on-line R help

D G Rossiter
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Help on functions or methods

Each function or method is documented with a help page, accessed by the help function:

> help(rnorm)

or, for short:

> ?rnorm

In R Studio can also search in the Help tab.

D G Rossiter
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Output from the help function

• Title and package where found

• Description

• Usage (how to call)

• Arguments (what each one means, defaults)

• Details of the algorithm

• Value returned

• Source of code

• References to the statistical or numerical methods

• See Also (related commands)

• Examples of use and output

D G Rossiter
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Example help page (1/2)

D G Rossiter
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Example help page (2/2)
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R manuals

• Included in the R distribution

• Access in R Studio with the Help tab or Help | R help menu item

• Six manuals; the first two are most relevant to an end-user

– An Introduction to R – somewhat difficult reading but packed with information
∗ R Rüº; old version (2006)
∗ http://cran.r-project.org/doc/contrib/Ding-R-intro_cn.pdf

– R Data Import/Export
– R Installation and Administration
– The R Language Definition
– Writing R Extensions
– R Internals

• Reference cards: R Â�aG

• There is also a FAQ

D G Rossiter
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on-line R help

• R task views

• StackOverflow R tags

• RSeek: http://www.rseek.org/

• User-written manuals, reference cards etc.: http://cran.r-project.org/, link
“Contributed”

D G Rossiter
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StackOverflow

URL: http://stackoverflow.com/questions/tagged/r: “Stack Overflow is a
question and answer site for professional and enthusiast programmers.”

Q&A tagged; the “R” tag is used for R questions.

For statistics questions, see http://stats.stackexchange.com: “Cross Validated is a
question and answer site for people interested in statistics, machine learning, data analysis,
data mining, and data visualization.”

You can post questions, always with small, reproducible examples – often writing those
examples will give you the solution yourself!

D G Rossiter
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StackOverflow R tags

D G Rossiter
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RSeek results

D G Rossiter



Introduction to R 28

R Task Views

Some applications are covered in so-called Task Views, on-line at
http://cran.r-project.org/web/views/index.html, or at
http://cran.r-project.org/, link “Task views”

These are a summary by a task maintainer of the facilities in R (e.g., which packages and
functions to use) to accomplish certain tasks.

Examples:

• Analysis of Spatial Data
http://cran.r-project.org/web/views/Spatial.html

• Multivariate Statistics
http://cran.r-project.org/web/views/Multivariate.html

D G Rossiter
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Contributed packages and example datasets

A major strength of R is the availability of user-contributed packages; 7 728 as of
05-Jan-2016!

You don’t need all of them!

These are often described in journal articles, books or technical reports, e.g.,

Baddeley, A., & Turner, R. (2004). spatstat: An R Package for Analyzing Spatial
Point Patterns. Journal of Statistical Software, 12(6). Retrieved from
http://www.jstatsoft.org/v12/i06

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Newbury Park:
Sage. (the car package)

Diggle, P. J., & Ribeiro Jr., P. J. (2007). Model-based geostatistics. Springer. (the
geoR package)

D G Rossiter
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Installing packages

1. Find list at http://cran.r-project.org/; link “Packages”, link “Table of available
packages, sorted by name”

2. In RStudio: “Packages” pane, “Install” button; enter the names of the packages to install

3. Also check “Install dependecies” – most packages depend on others to also be on the
system

4. The first time you will be prompted to pick a repository, also known as mirror – R is
hosted at 100’s of sites around the world; they should all have the same packages

D G Rossiter
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Loading packages

The library loads a package if it’s not already in the workspace; it will also load
dependencies

> library(gstat)

Loading required package: gstat

Loading required package: sp

Using RStudio: “Packages” pane, check the packages to load.

D G Rossiter
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How do I find the method to do what I want?

• Mentioned in journal articles on subject of interest.

• Look at the help pages for methods you do know; they often list related methods.

• Search for keywords

– e.g., help.search("sequence") lists methods to generate sequences, vectors of
sequences, and sequences of dates for time-series analysis.

• Look at the Task Views http://cran.r-project.org/src/contrib/Views/

• Search the contributed documentation at CRAN

• Find a textbook that uses R

D G Rossiter
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Example data

• Base R includes a datasets package with many example datasets

• Most packages also include example data, which are used to explain the packages’
functions and methods

• When a package is loaded, so is its example data

• List datasets with data(); this is shown in a file frame

• Once you know the dataset name, see its documentation with ? or help

• To load into the workspace, use the data function with the dataset name

D G Rossiter
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Example
> data()

> ?CO2

> data(CO2)

> library(sp)

> data(package="sp")

> ?meuse

> data(meuse)

CO2 is a dataset in the
datasets package

meuse is a dataset in the
sp “classes and methods
for spatial data” package

D G Rossiter
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Topics – Part 2

1. Data types: logical, numeric (integer, double, complex), character, lists

2. Arrays, matrices and dataframes

3. Vectorized operations; applying functions over arrays

4. Matrix and dataframe manipulation

5. Logical expressions

6. Importing and exporting data

7. Summarizing data

8. Basic statistical functions

9. Specifying statistical models; the lm (linear models) function

D G Rossiter
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Data types and structures

• Data types: logical, numeric (integer, double, complex), character, lists

• Arrays, matrices and dataframes

• Vectorized operations; applying functions over arrays

• Matrix and dataframe manipulation

• Factors (categorical variables)

D G Rossiter
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Basic data types

• All objects in S have a data type

• Operators and functions understand these

• Some basic types: logical; integer; double; character; list; expression;
function

• logical; integer; double; character are all vectors with one or more elements

• lists can combine any objects

D G Rossiter
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Derived data types

These are basic types with some additional attributes appropriate to the derived type.

Examples:

• a array is a vector with a dim“dimensions” attribute

• a matrix is a 2-D array

• a dataframe is a matrix with column (field) names and row.names

D G Rossiter
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Vectorized operations

S works on vectors and matrices as with scalars, with natural extensions of operators,
functions and methods.

> (sample <- seq(1, 10) + rnorm(10))

[1] -0.1878978 1.6700122 2.2756831 4.1454326

[5] 5.8902614 7.1992164 9.1854318 7.5154372

[9] 8.7372579 8.7256403

The ten integers 1 ...10 returned by the call to the seq (sequence) method each have a
different random noise added to them; here the rnorm method also returns ten values.

If one of the vectors is shorter than the other, it is recycled as necessary:

> (samp <- seq(1, 10) + rnorm(5))

[1] -1.23919739 0.03765046 2.24047546 4.89287818

[5] 4.59977712 3.76080261 5.03765046 7.24047546

[9] 9.89287818 9.59977712

D G Rossiter
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Objects and classes

• S is an object-oriented computer language

• Everything in S is an object; every object has a class

• The class determines the way in which it may be manipulated

• Generic methods (e.g., summary, str) dispatch by the class

> class(seq(1:10)); class(seq(1,10, by=.01)); class(letters)

[1] "integer"

[1] "numeric"

[1] "character"

> class(diag(10)); class(iris); class(lm)

[1] "matrix"

[1] "data.frame"

[1] "function"

D G Rossiter
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Examples

> letters; letters + 3

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"

[20] "t" "u" "v" "w" "x" "y" "z"

Error in letters + 3 : non-numeric argument to binary operator

> str(letters); str(diag(10)); str(iris)

chr [1:26] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" ...

num [1:10, 1:10] 1 0 0 0 0 0 0 0 0 0 ...

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

D G Rossiter
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Matrices

> (cm <- c(35,14,11,1,4,11,3,0,12,9,38,4,2,5,12,2))

[1] 35 14 11 1 4 11 3 0 12 9 38 4 2 5 12 2

> dim(cm)

NULL

Initially, the vector has no dimensions; these are added with the dim function:

> dim(cm) <- c(4, 4)

> print(cm)

[,1] [,2] [,3] [,4]

[1,] 35 4 12 2

[2,] 14 11 9 5

[3,] 11 3 38 12

[4,] 1 0 4 2

> dim(cm)

[1] 4 4

D G Rossiter
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Matrix arithmetic

Many S operators can work directly on matrices; there are also typical matrix functions:

• +, -, *, / etc. work element-wise

• matrix multiplication: %*%

• transposition: t function

• inversion: solve function

• spectral decomposition: eigen function

• Singular Value Decomposition: svd function

• . . .

D G Rossiter
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Data frames

The fundamental structure for statistical analysis; a matrix with:

1. named columns (roughly, database “fields”) and

2. (optionally) named rows (roughly, database “cases”):

We illustrate with one of R’s example datasets, provided in the base datasets package:

We first display the help file, then load the data, then view the data structure (field names
and types):

> ?trees

> data(trees)

> str(trees)

`data.frame': 31 obs. of 3 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 ...
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Accessing fields in a data frame

Using the $ operator:

> summary(trees$Volume)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.2 19.4 24.2 30.2 37.3 77.0

This $ operator exposes the field name.

D G Rossiter
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Accessing a dataframe with matrix operators

The dataframe is just a special matrix, so:

> trees[1,] # one case, i.e. the first tree

Girth Height Volume

1 8.3 70 10.3

> trees[,2] # all cases (trees), second field (heights)

[1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69

[15] 75 74 85 86 71 64 78 80 74 72 77 81 82 80

[ 29] 80 80 87

> trees[1,2] # one field of one case: height of first tree

[1] 70

D G Rossiter
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> trees[1:3,] # first three cases (trees), all fields

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

> head(trees[,c(1,3)]) # first and third fields; `head' shows first six

Girth Volume

1 8.3 10.3

2 8.6 10.3

3 8.8 10.2

4 10.5 16.4

5 10.7 18.8

6 10.8 19.7

> trees[1,"Height"] # named field (i.e., matrix column)

[1] 70

D G Rossiter
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Factors

• Variables with a limited number of discrete values (categories) are called S factors.

• Internally they are stored as integers but each has a text name.

• They are handled properly by R functions and methods (they are not integers!).

– Unordered factors: no intrinsic order
– Ordered factors: intrinsic order relation, > etc. make sense

D G Rossiter
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Example of factors (1/2)

Suppose we have given three tests to each of three students, each with a numeric ID, and
we want to compare the students. We might enter the data frame as follows:

> student <- rep(c(700123, 131444, 201113), 3)

> score <- c(9, 6.5, 8, 8, 7.5, 6, 9.5, 8, 7)

> tests <- data.frame(cbind(student, score))

> str(tests)

'data.frame': 9 obs. of 2 variables:

$ student: num 700123 131444 201113 700123 131444 ...

$ score : num 9 6.5 8 8 7.5 6 9.5 8 7

The data type of student is numeric – this can lead to absurdities:

> lm(score ~ student, data=tests)

Coefficients:

(Intercept) student

6.682e+00 3.022e-06

Meaningless!

D G Rossiter
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Example (2/2)

Convert to a factor: the student number is just an ID; use as.factor:

> tests$student <- as.factor(tests$student)

> levels(tests$student)

[1] "131444" "201113" "700123"

> str(tests)

'data.frame': 9 obs. of 2 variables:

$ student: Factor w/ 3 levels "131444","201113",..: 3 1 2 3 1 2 3 1 2

$ score : num 9 6.5 8 8 7.5 6 9.5 8 7

> lm(score ~ student, data=tests)

(Intercept) student201113 student700123

7.3333 -0.3333 1.5000

This is a meaningful one-way linear model, showing the difference in mean scores of
students 201113 and 700123 from student 131444 (the intercept).

D G Rossiter
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Data manipulation

One of the strengths of R is the ability to manipulate data.

This is especially useful for automatic identification of suspected errors, outlier detection,
data transformations, subsetting on a factor . . .

D G Rossiter
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Subsetting on a logical expression

Find the tallest trees using the subset function:

> sort(trees$Height)

> subset(trees, Height >= 80)

[1] 63 64 65 66 69 70 71 72 72 74 74 75 75 75 76 76 77 78 79 80 80 80 80 80 81 81

[27] 82 83 85 86 87

Girth Height Volume

5 10.7 81 18.8

6 10.8 83 19.7

9 11.1 80 22.6

17 12.9 85 33.8

18 13.3 86 27.4

22 14.2 80 31.7

26 17.3 81 55.4

27 17.5 82 55.7

28 17.9 80 58.3

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0
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Another way . . .

Can use logical expression as subscripts:

> (trees.tall <- trees[trees$Height >= 80 , ])

Girth Height Volume

5 10.7 81 18.8

6 10.8 83 19.7

9 11.1 80 22.6

17 12.9 85 33.8

18 13.3 86 27.4

22 14.2 80 31.7

26 17.3 81 55.4

27 17.5 82 55.7

28 17.9 80 58.3

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0
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Identifying with a logical expression

Which are the tallest trees? Save indices for later use.

Use the which function to find the indices:

> (trees.tall.ix <- which(trees$Height >= 80))

> trees[trees.tall.ix, ]

[1] 5 6 9 17 18 22 26 27 28 29 30 31

Girth Height Volume

5 10.7 81 18.8

6 10.8 83 19.7

9 11.1 80 22.6

17 12.9 85 33.8

18 13.3 86 27.4

22 14.2 80 31.7

26 17.3 81 55.4

27 17.5 82 55.7

28 17.9 80 58.3

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0
D G Rossiter
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More complicated logical expression

Find very thin trees:

> trees$hg <- trees$Height/trees$Girth

> sort(trees$hg)

[1] 4.223301 4.444444 4.444444 4.469274 4.500000 4.637681 4.682081 4.685714

[9] 4.723926 5.103448 5.182482 5.571429 5.633803 5.736434 5.897436 6.000000

[17] 6.250000 6.466165 6.589147 6.666667 6.666667 6.696429 6.818182 6.857143

[25] 6.991150 7.159091 7.207207 7.558140 7.570093 7.685185 8.433735

> summary(trees$hg)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.223 4.705 6.000 5.986 6.838 8.434

> sd(trees$hg)

> (trees.thin <- subset(trees, hg > (mean(trees$hg) + sd(trees$hg))))

Girth Height Volume hg

1 8.3 70 10.3 8.433735

2 8.6 65 10.3 7.558140

5 10.7 81 18.8 7.570093

6 10.8 83 19.7 7.685185

9 11.1 80 22.6 7.207207
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Visualizing the thin trees

> plot(trees$Height ~ trees$Girth, xlab="Girth", ylab="Height",

main="Thin trees", pch=20, cex=2,

col=ifelse(trees$hg > (mean(trees$hg) + sd(trees$hg)), "red", "darkgreen"))
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Import/Export

Reference: “R Data Import/Export”, R manual installed with R; available under Help menu

Most common interchange format for flat-files: Comma-Separated Values (CSV)
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CSV file import

Look at file in plain-text editor; note header line, and the , field separator

x,y,cadmium,elev,dist,om,ffreq,soil,lime,landuse

181072,333611,11.7,7.909,0.00135803,13.6,1,1,1,Ah

181025,333558,8.6,6.983,0.0122243,14,1,1,1,Ah

181165,333537,6.5,7.8,0.103029,13,1,1,1,Ah

181298,333484,2.6,7.655,0.190094,8,1,2,0,Ga

181307,333330,2.8,7.48,0.27709,8.7,1,2,0,Ah

181390,333260,3,7.791,0.364067,7.8,1,2,0,Ga

Import with read.csv:

> ds <- read.csv("test.csv")

> str(ds)

(results on next slide)
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Result of CSV file input

'data.frame': 6 obs. of 10 variables:

$ x : int 181072 181025 181165 181298 181307 181390

$ y : int 333611 333558 333537 333484 333330 333260

$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3

$ elev : num 7.91 6.98 7.8 7.66 7.48 ...

$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...

$ om : num 13.6 14 13 8 8.7 7.8

$ ffreq : int 1 1 1 1 1 1

$ soil : int 1 1 1 2 2 2

$ lime : int 1 1 1 0 0 0

$ landuse: Factor w/ 3 levels "Ah","Ga","Ga ": 1 1 1 2 1 3

Note that read.csv could determine field landuse is a factor.

But it was not able to do so for the factors ffreq, soil, lime. So, we have to convert:

> ds$ffreq <- as.factor(ds$ffreq)
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General file import

Very flexible read.table function:

• field delimeters

• integer / decimal separator

• Header line(s)

• Skip lines

• Specify data types
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File export

Very flexible write.table function.

> write.table(round(as.data.frame(kxy), 4), file="KrigeResult.csv",

sep=",", quote=T, row.names=F,

col.names=c("E", "N", "LPb", "LPb.var"))

There are also ways to export to spreadsheets, databases, images, GIS coverages . . .
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Statistical models in S

• Specified in symbolic form with model formulae

• These formulae are arguments to many statistical methods:

– lm (linear models)
– glm (generalised linear models)
– gstat methods such as variogram and krige

• Can also be used in other contexts:

– Base graphics methods such as plot and boxplot

– Trellis graphics methods such as levelplot
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Form of statistical models

• Left-hand side: (mathematically) dependent variable

• Formula operator ~

• Right-hand side: (mathematically) independent variable(s)

The simplest use is in simple linear regression:

> model <- lm(Volume ~ Height, data=trees); summary(model)

> # equivalent to: model <- lm(trees$Volume ~ trees$Height)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.124 29.273 -2.98 0.00583

Height 1.543 0.384 4.02 0.00038

So, the tree volume is modelled as a linear function of the tree height.
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Model formula operators

• Additive effects: +

> model <- lm(Volume ~ Height + Girth, data=trees); summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.988 8.638 -6.71 2.7e-07

Height 0.339 0.130 2.61 0.014

Girth 4.708 0.264 17.82 < 2e-16

• Interactions: *

> model <- lm(Volume ~ Height * Girth, data=trees); summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.3963 23.8358 2.91 0.00713

Height -1.2971 0.3098 -4.19 0.00027

Girth -5.8558 1.9213 -3.05 0.00511

Height:Girth 0.1347 0.0244 5.52 7.5e-06
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• Crossing factors to a specified degree

> model <- lm(Volume ~ (Height + Girth)^2, data=trees)

In this case it’s the same as Height * Girth, because there are only two factors.

• Nested models: /

> model <- lm(Volume ~ Height / Girth, data=trees)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.23114 7.74157 -0.03 0.9764

Height -0.41218 0.12316 -3.35 0.0023

Height:Girth 0.06070 0.00266 22.79 <2e-16

• Remove terms: -; for example, the intercept:

> model <- lm(Volume ~ Height -1, data=trees); summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Height 0.4047 0.0354 11.4 1.9e-12
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• Arithmetic in models: I() method if ambiguous

> model <- lm(Volume ~ I(Height^2), data=trees); summary(model)

> # otherwise would cross height with itself in the model

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -30.19193 15.02843 -2.01 0.05393

I(Height^2) 0.01038 0.00255 4.07 0.00033
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Updating models

Use the update function, previous LHS and RHS represented by .

> model <- lm(Volume ~ Height + Girth, data=trees); summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.988 8.638 -6.71 2.7e-07

Height 0.339 0.130 2.61 0.014

Girth 4.708 0.264 17.82 < 2e-16

> model.2 <- update(model, . ~ . - Girth); summary(model.2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.124 29.273 -2.98 0.00583

Height 1.543 0.384 4.02 0.00038
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Model objects: structure and access

• Modelling functions like lm return an object with a class

• You can look directly at the structure . . .

• . . . but it is preferable to use access methods such as coefficients, residuals,
fitted.

> model <- lm(Volume ~ log(Height), data=trees); class(model); str(model)

[1] "lm"

List of 12

$ coefficients : Named num [1:2] -461 114

..- attr(*, "names")= chr [1:2] "(Intercept)" "log(Height)"

$ residuals : Named num [1:31] -10.928 -2.511 0.939 -8.028 -19.005 ...

..- attr(*, "names")= chr [1:31] "1" "2" "3" "4" ...

...
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Using access functions

These extract information from the fitted model.

> summary(residuals(model))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.09e+01 -9.77e+00 -2.51e+00 -4.73e-16 1.22e+01 3.11e+01

Other important access functions: summary, fitted, coef, anova, effects, vcov.
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Factors

• For categorical variables (can take only a defined set of values)

– unordered (nominal), e.g. land cover class
– ordered (ordinal), e.g. vegetation density class

• S calls these factors

• Methods (especially modelling) take appropriate action

• These are converted to contrasts in the design matrix of linear (and other) models
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Topics – Part 3

1. R base graphics

2. Scripts

3. User-defined functions

4. Programming in R: control structures

5. The R class structure; object-oriented programming

6. The ggplot2 graphics system

7. Some advanced statistical functions

8. Going further in R: task views, textbooks, tutorials
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R Graphics

R has a very rich visualization environment. There are (at least) four graphics systems:

1. Base graphics system: default graphics package (always loaded)

2. Trellis graphics: lattice package

3. “Grammar of Graphics”ggplot2 package

4. Grid graphics

R graphics are highly customizable; it is usual to write small scripts to get the exact
output you want.

Graphs may be displayed on screen or written directly to files for inclusion in documents.
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Base graphics

• Simple to learn

• Can make simple plots very easily

• Can also customize at will

• Some methods start a new plot, e.g. plot, hist, boxplot

• Other add to an existing (open) plot, e.g. points, lines, rug
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Example of default base graphics

> data(iris); with(iris, plot(Petal.Width ~ Petal.Length))
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Example of customized base graphics
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Code for previous graph

> attach(iris)

> plot(Petal.Length, Petal.Width, pch=20, cex=1.2,

xlab="Petal length (cm)", ylab="Petal width (cm)",

main="Anderson Iris data",

col=c("slateblue", "firebrick", "darkolivegreen")[as.numeric(Species)]

)

> abline(v=mean(Petal.Length), lty=2, col="red")

> abline(h=mean(Petal.Width), lty=2, col="red")

> abline(v=median(Petal.Length), lty=2, col="blue")

> abline(h=median(Petal.Width), lty=2, col="blue")

> grid()

> points(mean(Petal.Length), mean(Petal.Width), cex=2, pch=23, col="black", bg="red")

> points(median(Petal.Length), median(Petal.Width), cex=2, pch=23,

col="black", bg="blue")

> title(sub="Centroids: mean (green) and median (gray)")

> text(1, 2.4, "Three species of Iris", pos=4, col="navyblue")

> legend(1, 2.4, levels(Species), pch=20, bty="n",

col=c("slateblue","firebrick", "darkolivegreen"))

> detach(iris)

Note that plot starts a new graph; all the others add elements to the plot.
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Trellis graphics

An R implementation of the trellis graphics system developed at Bell Labs by Cleveland is
provided by packakge lattice.

It is especially intended for multivariate visualization

• Harder to learn than R base graphics

• Can produce higher-quality graphics, especially for multivariate visualisation when the
relationship between variables changes with some grouping factor; this is called
conditioning the graph on the factor

• It uses model formulae similar to the statistical formulae to specify the variables to be
plotted and their relation in the plot.

• Multiple items on one plot are specified with user-written panel functions
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Example of trellis graphics
All species
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Note the right plot: it has been conditioned on a factor, namely the species.
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Code for previous graph

> xyplot(Petal.Width ~ Petal.Length, data=iris, groups=Species, auto.key=T)

> xyplot(Petal.Width ~ Petal.Length | Species, data=iris, groups=Species)

Note the | in the formula; this means “conditioned on”.
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Grammar of graphics

• A completely new way to think about composing statistical graphs

• Text: Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis, Use R! Springer.

• Web site: http://ggplot2.org

• How are statistical graphics a “grammar” (íÕ)?

– a mapping from data to aesthetic attributes (colour, shape, size) . . .
– . . . of geometric objects (points, lines, bars).
– data may also be statistically-transformed
– the graph must be drawn on a coordinate system
– subsets of the data can be shown in sub-windows (“faceting”)

• R code to specify can be quite complex

• But the qplot“quick plot” method can be used for many simple cases (analogous to
plot of base graphics).
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Example of ggplot2 graphics
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Code for previous graph

> library(sp); data(meuse)

> qplot(x = dist.m, y = log10(lead), data = meuse,

+ geom = c("point", "smooth", method='loess')

> qplot(x = dist.m, y = log10(lead), data = meuse,

+ colour = ffreq, geom = c("point", "smooth"), method="loess")

• Data is the meuse dataframe

• two geometries are specified: (1) the points (a scatterplot); (2) a smooth line

• the coordinate system is by default a scatterplot (x-y plot)

• the x and y axes are the two named variables; the Pb content is log-transformed

• in the right-hand graph the points are coloured by a categorical variable (flood
frequency class)

• the smooth line and confidence limits are computed by locally-adjusted least squares
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Grid graphics

A low-level graphics programming language by Paul Murrel. lattice is written in grid.
Allows fine control of graphic output.

Complete information on author’s R graphics page:

http://www.stat.auckland.ac.nz/~paul/grid/grid.html

and in his book:

http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
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Programming R

R is a full-featured, modern programming language. This can be accessed four ways, in
increasing level of complexity:

S was developed by Chambers for “programming with data”

1. Commands: at the > prompt, typed or cut-and-paste

• These can use control structures for looping, conditional execution, and repetition

2. User-written scripts

3. User-defined functions

4. User-contributed packages
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Control structures

S has ALGOL-like control structures:

• if ...else

• for; note that vectorized functions or methods often are preferable

• while, repeat

• break, next

and within an expression:

• the ifelse function
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Example of the ifelse function

Here it is used to select a plotting colour:

> x <- rnorm(100); y <- runif(100, -3, 3)

> plot(y ~ x, asp=1, col=ifelse(y > x, "red", "green"), pch=20, cex=1.5)

> abline(0, 1, lty=2)
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Example of the while control structure

For some simulation we want to draw a sample from the normal distribution but make sure
there is an extreme value, so we repeat the sampling until we get what we want:

> while (max(abs(sample <- rnorm(100))) < 3) print("No extreme")

> range(sample)

[1] "No extreme"

[1] "No extreme"

[1] "No extreme"

[1] -3.2648 2.5457
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Why use scripts?

• For reproducible processing

– Especially for complicated graphics
– Also for multi-step analyses
– For simulations where each run is different, due to randomness

• Can document the steps internally (as S comments)

D G Rossiter
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Writing and running scripts

1. Prepare script in some editor

• Editor component of IDE, e.g., RStudio
• Plain-text editor (no formatting!)
• Editor built into R: some help with syntax, commands
• Emacs + ESS (“Emacs speaks statistics”) http://ess.r-project.org/

2. Run with the source function or via editor commands

• e.g., RStudio “Run Lines” or “Run Region” menu commands

D G Rossiter
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RStudio screenshot with script and console

D G Rossiter



Introduction to R 91

Example

1. Enter the following in a plain text file:

# draw two independent normally-distributed samples

x <- rnorm(100, 180, 20); y <- rnorm(100, 180, 20)

# scatterplot

plot(x, y)

# correlation: should be 0

cor.test(x, y, conf=0.9)

2. Save with name e.g. test.R (convention: .R extension)

3. In R, source the file (or send from the editor):

> source("test.R")

t = -0.1925, df = 98, p-value = 0.8477

alternative hypothesis: true correlation is not equal to 0

90 percent confidence interval:

-0.18433 0.14650

sample estimates:

cor

-0.019446
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A more complicated example

Enter this in a script file; save as test.R.

# see how correlation coefficients are distributed in uncorrelated random samples

m <- 1000 # number of runs

n <- 100 # size of random samples

results <- rep(0, m)

for (i in 1:m) {

x <- rnorm(100); y <- rnorm(100) # default mu=0, sigma=1

results[i] <- cor(x, y)

}

summary(results)

tmp <- qplot(results, binwidth=0.02)

print(tmp + geom_bar(colour="white", fill="darkgreen", binwidth=0.02) + geom_rug())

Run the script:

> source('test.R')

The script can be run several times, also with different numbers of runs and sample sizes,
to compare the results.
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Results

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.382500 -0.071820 -0.001889 -0.001115 0.072200 0.355600
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User-defined functions

• These are like R built-in functions but simpler

• Defined as objects in the workspace (not in the system)

• Why?

– R may not have a function or method to compute what you want
– You want to expand a script with arguments to apply the script to any suitable

object
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Simple example of user-defined function

There is no R function to compute the harmonic (geometric) mean of a vector, but we
can define it easily enough. For a vector v with n elements:

v̄h =
 ∏
i=1...n

vi

1/n

This is computed by taking logarithms, dividing by the length, and exponentiating.

The function function is used to define a function (!); it can then be assigned to an
object in the workspace. The function has one argument, here named v:

> hm <- function(v) exp(sum(log(v))/length(v))

> class(hm)

> hm(1:99); mean(1:99)

[1] "function"

[1] 37.6231

[1] 50
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A better version

A function should check for valid inputs. This shows the use of the if, else if, else

control structure:

> hm <- function(v) {

if (!is.numeric(v)) {

print("Argument must be numeric"); return(NULL)

}

else if (any(v <= 0)) {

print("All elements must be positive"); return(NULL)

}

else return(exp(sum(log(v))/length(v)))

}

> hm(letters)

> hm(c(-1, -2, 1, 2))

> hm(1:99)

[1] "Argument must be numeric"

NULL

[1] "All elements must be positive"

NULL

[1] 37.6231
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Another example

The “correlation of two random normal vectors” script can be converted to a function; the
arguments are the number of runs and sample size:

> corr.two.random.normal <- function(m =1000, n=100) {

+ results <- rep(0, m)

+ for (i in 1:m) {

+ x <- rnorm(100); y <- rnorm(100) # default mu=0, sigma=1

+ results[i] <- cor(x, y)

+ }

+ summary(results)

+ tmp <- qplot(results, binwidth=0.02)

+ print(tmp + geom_bar(colour="white", fill="darkgreen", binwidth=0.02) + geom_rug())

+ }

The function is now defined in the workspace; to call it:

> corr.two.random.normal() # with defaults

> corr.two.random.normal(256, 20) # specify m and n

Try it! The second histogram will be much more erratic than the first.

D G Rossiter



Introduction to R 98

Some advanced statistical functions

This is a very small sample of what is available.
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Modelling

• Non-linear model fitting: nls

• Non-linear mixed-effects models: nlme package

• Generalized linear models (GLM): glm

• Robust fitting of linear models: lqs, lm.ridge etc.

• Local (smooth) fitting: loess

• Stepwise regression: step

• Regression trees: trees, rpart packages

• Principal component, partial least squares: prcomp, pls packages

• Random forests: randomForest package
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Simulation

• Bootstrapping: boot package
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Time and space

• Time-series analysis: ts, arima etc.

• Spatially-explicit objects: sp package

• Geostatistics: gstat, geoR, spatial packages

• Space-time geostatistics: spacetime package

• Point-pattern analysis: spatstat, spatial packages

• Areal spatial data analysis (like GEODA): spdep package

• Interface to GIS: rgdal, RSAGA packages

• Image processing: raster package
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Resources for learning R

R is very popular and widely-used; in the spirit of the open-source movement many working
statisticians and application scientists have written documentation.

• Introductions and tutorials

• On-line help (within R and on the Internet)

• Contributed documentation

• Textbooks

• Task views

• R Journal, Mailing lists, user’s conference
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General introductions

• Venables, W. N. ; Smith, D. M. ; R Development Core Team, 2014. An
Introduction to R (Notes on R: A Programming Environment for Data Analysis and
Graphics), updated at each version of R

http://www.cran.r-project.org; also included with R distribution

The standard introduction. This links to:

• Hornik, K. 2007. R FAQ: Frequently Asked Questions on R. Also updated with each
version.

What is R? Why ‘R’? Availability, machines, legality, documentation, mailing lists . . .

These are updated with each R release.
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On-line help

• Within the R environment: help method, abbreviated ?; help.search method

• On the internet

– RSeek: http://www.rseek.org/
– RSiteSearch method

D G Rossiter
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RSeek results
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RSiteSearch method results
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Textbooks using R

More and more texts are using R code to illustrate their statistical analyses.

• Dalgaard, P. 2002. Introductory Statistics with R. Springer Verlag.

This is a clearly-written introduction to statistics, using R in all examples.

• Venables, W. N. & Ripley, B. D. 2002. Modern applied statistics with S. New
York: Springer-Verlag, 4th edition; http://www.stats.ox.ac.uk/pub/MASS4/

Presents a wide variety of up-to-date statistical methods (including spatial statistics)
with algorithms coded in S; includes an introduction to R, R programming, and R
graphics.

• Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Newbury Park:
Sage.

A social scientist explains how to use R for regression analysis, including advanced
techniques; this is a companion to his text: Fox, J. 1997. Applied regression, linear
models, and related methods. Newbury Park: Sage
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The UseR! series

Springer is publishing a series of practical introductions with R code to topics such as:

• data manipulation

• Bayesian analysis

• spatial data anlysis

– Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V 2008. Applied Spatial
Data Analysis with R : Springer; UseR! series. http://www.asdar-book.org/

• time-series

• interactive graphics

List at http://www.springer.com/series/6991
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Technical Notes using R

I have written a number of technical notes showing how to accomplish some statistical
tasks with R; the full list is at

http://www.css.cornell.edu/faculty/dgr2/pubs/list.html#pubs_m_R

These include general data analysis, logistic regression, confusion matrices, co-kriging,
partioning transects, and fitting rational functions.
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R Task Views

Some applications are covered in so-called Task Views, on-line at
http://cran.r-project.org/web/views/index.html.

These are a summary by a task maintainer of the facilities in R (e.g., which packages and
functions to use) to accomplish certain tasks. Examples:

• Analysis of Spatial Data
http://cran.r-project.org/web/views/Spatial.html

• Multivariate Statistics
http://cran.r-project.org/web/views/Multivariate.html
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Keeping up with developments in R

R is a dynamic environment, with a large number of dedicated scientists working to
make it both a rich statistical computing environment and a modern programming
language.

Daily new and modified packages added to CRAN; new versions of the R base
appear 2–4x yr-1

• R Journal: about 4x yr-1; http://journal.r-project.org/

News, announcements, tutorials, programmer’s tips, bibliographies

• Journal of Statistical Software; http://www.jstatsoft.org/

(continued . . . )
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. . .

• Mailing lists: “Mailing Lists” link at CRAN:

– R-announce: major announcements, e.g. new versions
– R-packages: announcements of new or updated packages
– R-help: discussion about problems using R, and their solutions. The R gurus monitor

this list and reply as necessary. A search through the archives is a good way to see if
your problem was already discussed.

• useR! user’s conference; proceedings on-line; tutorials, workshops, user presentations,
thematic sessions
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Topics – Part 4

1. Reproducible research and literate programming

2. The Tidyverse
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Reproducible research and literate programming

Reproducible research: “research papers with accompanying software tools that allow
the reader to directly reproduce the results and employ the computational methods that are
presented in the research paper.”

Literate programming:

• both code and comments in the same document; code is executed and produces the
results seen in the document; no cut-and-paste

• if data changes, document changes (code is the same, results are different!)

See: Rossiter, DG 2012. Technical Note: Literate Data Analysis using the R environment
for statistical computing and the knitr package 26-December-2012, 35 pp;
http://www.css.cornell.edu/faculty/dgr2/pubs/list.html#pubs_m_R
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The Tidyverse

• “[A]n opinionated collection of R packages designed for data science1

– The “opinion” of Hadley Wickham
– Main packages dplyr, tidyr, readr, stringr, tibble, ggplot2

• Well-explained in the (free) on-line text R for Data Science2

• Defines a syntax for pipes (magrittr package), for sequences of operations without
having to define intermediate workspace objects

• Defines the tibble: “a modern re-imagining of the data frame, keeping what time has
proven to be effective, and throwing out what it has not.”

1https://www.tidyverse.org
2https://r4ds.had.co.nz
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Pipes
Example:

the_data <-

read.csv('/path/to/data/file.csv') %>%

subset(variable_a > x) %>%

transform(variable_c = variable_a/variable_b) %>%

head(100)

• Only one workspace object (the data) is created

• the results of each expression are passed to the next with the pipe operator %>%.

Exposing variables in a dataframe with the %$% operator :

data(iris) # Edgar Anderson's Iris Data, in datasets package

iris %>%

subset(Sepal.Length > mean(Sepal.Length)) %$%

cor(Sepal.Length, Sepal.Width)

See https://magrittr.tidyverse.org for more examples and complete syntax.
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