
Introduction to the
R Project for Statistical Computing

Adjunct Associate Professor
School of Integrative Plant Sciences, Section of Soil & Crop Sciences

Cornell University.

D G Rossiter W'�
Visiting Scientist Y�

Nanjing Institute of Soil Science, Chinese Academy of Sciences
-ýÑfW¬b�ä�v@

January 21, 2019

Copyright © 2014-2016, 2019 David G Rossiter
All rights reserved. Reproduction and dissemination of the work as a whole (not parts) freely permitted if this original
copyright notice is included. Sale or placement on a web site where payment must be made to access this document is strictly
prohibited. To adapt or translate please contact the author (d.g.rossiter@cornell.edu).

d.g.rossiter@cornell.edu

Introduction to R 1

Topics – Part 1

1. The R Project for Statistical Computing: what and why?

2. Installing R and RStudio

3. Interacting with R

4. The S language: expressions, assignment, functions

5. The R help system, R manuals, on-line R help

6. Finding, installing and loading contributed packages

7. Finding and loading example datasets

D G Rossiter

Introduction to R 2

The R Project for Statistical Computing: what and why?

• R is an open-source environment for statistical computing, data manipulation
and visualisation;

• Statisticians have implemented over 2 000 specialised statistical procedures as
contributed packages;

• R and its packages are freely-available over the internet;

• R runs on many operating systems, including Microsoft Windows, Unix© and
derivatives Mac OS X and Linux;

• R is fully programmable, with its own modern computer language, S;

• Repetitive procedures can be automated by user-written scripts, functions or
packages;

• . . .

D G Rossiter

Introduction to R 3

• . . .

• R is supported by comprehensive technical documentation, user-contributed tutorials
and textbooks; these all have freely-available R code

• R is the lingua franca (n�Ý) of the computational statistics world.

• R can import and export in MS-Excel, text, fixed and delineated formats (e.g. CSV),
with databases . . . ;

• R is a major part of the open source and reproducible research movement for
transparent and honest science.

D G Rossiter

Introduction to R 4

Installing R and RStudio

• R is the the computing environment; RStudio is an Integrated Development
Environment (IDE) which makes using R easier

• Install R first; it can run outside RStudio

– The Comprehensive R Archive Network (CRAN): http://cran.r-project.org/
to download R, packages and documentation

– link “Download R for . . . ” (Linux, Mac OS/X, Windows)
– Install the “base” version

• Install RStudio from its home page http://www.rstudio.com/

– link “Download RStudio” desktop open-source version

• Start RStudio; it will automatically start R.

D G Rossiter

http://cran.r-project.org/
http://www.rstudio.com/

Introduction to R 5

RStudio Features (1/2)

• R console

– enter R commands here, see text output

• Code editor

– write one or more R commands, pass the commands to the console and see the text
output there

– advantage: can edit and re-run
– can save the script to reproduce the analysis

• Graphics viewer (“Plots”)

– shows output of commands that produce figures
– can save for printing or inclusion in reports

D G Rossiter

Introduction to R 6

RStudio Features (2/2)

• Workspace viewer

– shows the objects in your workspace

• File manager

• History viewer

• Package manager

– install (from CRAN) and load (in your workspace) additional packages

• Integrated help system

• Project manager

– can switch between data analysis projects, each in its own directory

D G Rossiter

Introduction to R 7

RStudio Screenshot

D G Rossiter

Introduction to R 8

Basic interaction with the R console

• > is a prompt: R is waiting for input:

>

• You can type directly after the prompt; press the Enter to submit the command to R

• If a command is not syntactically-complete, R will show the continuation prompt:

+

• When the command is complete, R will execute

• Better: type a command in the code editor and click the Run button or press
Alt+Enter to pass the command to the console

• Text output (if any) will appear in the console; figures will appear the graphics window

D G Rossiter

Introduction to R 9

First interaction with the console

Draw 100 normally-distributed random numbers (µ = 0, σ 2 = 1), summarize them:

> summary(rnorm(100))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.36000 -0.85350 -0.06113 -0.14620 0.58610 2.47700

Draw another set of 100 and graph
them as a histogram:

> hist(rnorm(100))

Your results will be different – why?
D G Rossiter

Introduction to R 10

The S language

1. Origin; R vs. S

2. Expresssions

3. Assignment and the workspace

4. Functions

D G Rossiter

Introduction to R 11

Origin of S

• The language implemented in the R environment is S

• Developed at Bell Laboratories (USA) in the 1980’s (John Chambers etc.)

• Designed for“programming with data”, including statistical analysis

• Line between “user” and “programmer” purposely blurred

• Syntax similar to ALGOL-like programming languages (C, Pascal, and Java . . .)

• Operators,functions and methods are generally vectorized; vector and matrix
operations are expressed naturally

• Statistical models specified with a standard notation

D G Rossiter

Introduction to R 12

Origin of R

• 1990–1994 Ross Ihaka, Robert Gentleman at Univ. Auckland (NZ), for own teaching
and research

• Syntax from S, internals from Scheme (a LISP-like functional programming language)

• 1997 Kurt Hornik and Fritz Leisch establishe the CRAN (Comprehensive R Action
Network) archive at TU Vienna

• 2000 V1.0 official release

• R Core Team of developers (Ripley, Dalgaard, Lumley, Tierney, Plummer . . .)

• S3 and then S4 object-oriented systems (V2, V3)

• Independent package developers

• 2015 Microsoft aquires Revolution Analytics
https://mran.revolutionanalytics.com – still open-source but “industrial-level”
support for Big Data projects

D G Rossiter

https://mran.revolutionanalytics.com

Introduction to R 13

Expressions

R can be used as a command-line calculator; these S expressions can then be used
anywhere in a statemnt.

> 2*pi/360

[1] 0.0174533

> 3 / 2^2 + 2 * pi

[1] 7.03319

> ((3 / 2)^2 + 2) * pi

[1] 13.3518

D G Rossiter

Introduction to R 14

Assignment

Results of expressions can be saved as objects in the workspace.

There are two (equivalent) assignment operators:

> rad.deg <- 2*pi/360

> rad.deg = 2*pi/360

By default nothing is printed; but all of these:

> (rad.deg <- 2*pi/360)

> rad.deg

> print(rad.deg)

give the same output:

[1] 0.0174533

D G Rossiter

Introduction to R 15

Workspace objects

• Create by assignment

• May be complex data structures (see ‘methods’)

– In the example below we use the c ‘catenate; build a chain’ function to build a vector

• List with ls ‘list’ or objects functions

• Delete with the rm (remove) function

> (heights <- c(12.2, 13.1, 11.9, 15.5, 10.9))

[1] 12.2 13.1 11.9 15.5 10.9

> ls()

[1] "heights"

> rm(heights); ls()

character(0)
D G Rossiter

Introduction to R 16

Functions and Methods

Most work in S is done with functions or methods:

1. Method or function name; any arguments between parentheses ()

2. Argument list

(a) Required
(b) Optional, with defaults
(c) positional and/or named

These usually return some values, which can be complex data structures

D G Rossiter

Introduction to R 17

Example of a function call

Function name: rnorm (sample from a normal distribution)
Required argument: n: number of sampling units
Optional arguments: mean, sd

> rnorm(20)

[1] 0.388120 0.051022 -1.090701 0.155238 1.725087 2.011053 -2.122989 -0.685271

[9] -0.112195 0.876962 0.053067 -1.099789 0.299773 0.147167 -0.808183 -0.403877

[17] 1.173150 -1.557166 0.257684 -0.061434

> rnorm(20, mean=180)

[1] 180.99 180.89 180.64 181.64 179.45 179.90 179.04 179.62 178.94 180.66 179.35

[12] 180.16 179.31 179.66 178.05 180.07 181.58 179.37 179.08 180.21

> rnorm(20, mean=180, sd=10)

[1] 171.90 179.90 189.82 191.80 182.41 187.19 162.89 202.09 185.78 188.01 174.15

[12] 183.09 158.83 175.42 166.60 188.93 181.84 177.15 167.56 177.75

D G Rossiter

Introduction to R 18

The R help system, R manuals, on-line R help

1. R help

2. R manuals

3. on-line R help

D G Rossiter

Introduction to R 19

Help on functions or methods

Each function or method is documented with a help page, accessed by the help function:

> help(rnorm)

or, for short:

> ?rnorm

In R Studio can also search in the Help tab.

D G Rossiter

Introduction to R 20

Output from the help function

• Title and package where found

• Description

• Usage (how to call)

• Arguments (what each one means, defaults)

• Details of the algorithm

• Value returned

• Source of code

• References to the statistical or numerical methods

• See Also (related commands)

• Examples of use and output

D G Rossiter

Introduction to R 21

Example help page (1/2)

D G Rossiter

Introduction to R 22

Example help page (2/2)

D G Rossiter

Introduction to R 23

R manuals

• Included in the R distribution

• Access in R Studio with the Help tab or Help | R help menu item

• Six manuals; the first two are most relevant to an end-user

– An Introduction to R – somewhat difficult reading but packed with information
∗ R Rüº; old version (2006)
∗ http://cran.r-project.org/doc/contrib/Ding-R-intro_cn.pdf

– R Data Import/Export
– R Installation and Administration
– The R Language Definition
– Writing R Extensions
– R Internals

• Reference cards: R Â�aG

• There is also a FAQ

D G Rossiter

http://cran.r-project.org/doc/contrib/Ding-R-intro_cn.pdf

Introduction to R 24

on-line R help

• R task views

• StackOverflow R tags

• RSeek: http://www.rseek.org/

• User-written manuals, reference cards etc.: http://cran.r-project.org/, link
“Contributed”

D G Rossiter

http://www.rseek.org/
http://cran.r-project.org/

Introduction to R 25

StackOverflow

URL: http://stackoverflow.com/questions/tagged/r: “Stack Overflow is a
question and answer site for professional and enthusiast programmers.”

Q&A tagged; the “R” tag is used for R questions.

For statistics questions, see http://stats.stackexchange.com: “Cross Validated is a
question and answer site for people interested in statistics, machine learning, data analysis,
data mining, and data visualization.”

You can post questions, always with small, reproducible examples – often writing those
examples will give you the solution yourself!

D G Rossiter

http://stackoverflow.com/questions/tagged/r
http://stats.stackexchange.com

Introduction to R 26

StackOverflow R tags

D G Rossiter

Introduction to R 27

RSeek results

D G Rossiter

Introduction to R 28

R Task Views

Some applications are covered in so-called Task Views, on-line at
http://cran.r-project.org/web/views/index.html, or at
http://cran.r-project.org/, link “Task views”

These are a summary by a task maintainer of the facilities in R (e.g., which packages and
functions to use) to accomplish certain tasks.

Examples:

• Analysis of Spatial Data
http://cran.r-project.org/web/views/Spatial.html

• Multivariate Statistics
http://cran.r-project.org/web/views/Multivariate.html

D G Rossiter

http://cran.r-project.org/web/views/index.html
http://cran.r-project.org/
http://cran.r-project.org/web/views/Spatial.html
http://cran.r-project.org/web/views/Multivariate.html

Introduction to R 29

Contributed packages and example datasets

A major strength of R is the availability of user-contributed packages; 7 728 as of
05-Jan-2016!

You don’t need all of them!

These are often described in journal articles, books or technical reports, e.g.,

Baddeley, A., & Turner, R. (2004). spatstat: An R Package for Analyzing Spatial
Point Patterns. Journal of Statistical Software, 12(6). Retrieved from
http://www.jstatsoft.org/v12/i06

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Newbury Park:
Sage. (the car package)

Diggle, P. J., & Ribeiro Jr., P. J. (2007). Model-based geostatistics. Springer. (the
geoR package)

D G Rossiter

http://www.jstatsoft.org/v12/i06

Introduction to R 30

Installing packages

1. Find list at http://cran.r-project.org/; link “Packages”, link “Table of available
packages, sorted by name”

2. In RStudio: “Packages” pane, “Install” button; enter the names of the packages to install

3. Also check “Install dependecies” – most packages depend on others to also be on the
system

4. The first time you will be prompted to pick a repository, also known as mirror – R is
hosted at 100’s of sites around the world; they should all have the same packages

D G Rossiter

http://cran.r-project.org/

Introduction to R 31

Loading packages

The library loads a package if it’s not already in the workspace; it will also load
dependencies

> library(gstat)

Loading required package: gstat

Loading required package: sp

Using RStudio: “Packages” pane, check the packages to load.

D G Rossiter

Introduction to R 32

How do I find the method to do what I want?

• Mentioned in journal articles on subject of interest.

• Look at the help pages for methods you do know; they often list related methods.

• Search for keywords

– e.g., help.search("sequence") lists methods to generate sequences, vectors of
sequences, and sequences of dates for time-series analysis.

• Look at the Task Views http://cran.r-project.org/src/contrib/Views/

• Search the contributed documentation at CRAN

• Find a textbook that uses R

D G Rossiter

http://cran.r-project.org/src/contrib/Views/

Introduction to R 33

Example data

• Base R includes a datasets package with many example datasets

• Most packages also include example data, which are used to explain the packages’
functions and methods

• When a package is loaded, so is its example data

• List datasets with data(); this is shown in a file frame

• Once you know the dataset name, see its documentation with ? or help

• To load into the workspace, use the data function with the dataset name

D G Rossiter

Introduction to R 34

Example
> data()

> ?CO2

> data(CO2)

> library(sp)

> data(package="sp")

> ?meuse

> data(meuse)

CO2 is a dataset in the
datasets package

meuse is a dataset in the
sp “classes and methods
for spatial data” package

D G Rossiter

Introduction to R 35

Topics – Part 2

1. Data types: logical, numeric (integer, double, complex), character, lists

2. Arrays, matrices and dataframes

3. Vectorized operations; applying functions over arrays

4. Matrix and dataframe manipulation

5. Logical expressions

6. Importing and exporting data

7. Summarizing data

8. Basic statistical functions

9. Specifying statistical models; the lm (linear models) function

D G Rossiter

Introduction to R 36

Data types and structures

• Data types: logical, numeric (integer, double, complex), character, lists

• Arrays, matrices and dataframes

• Vectorized operations; applying functions over arrays

• Matrix and dataframe manipulation

• Factors (categorical variables)

D G Rossiter

Introduction to R 37

Basic data types

• All objects in S have a data type

• Operators and functions understand these

• Some basic types: logical; integer; double; character; list; expression;
function

• logical; integer; double; character are all vectors with one or more elements

• lists can combine any objects

D G Rossiter

Introduction to R 38

Derived data types

These are basic types with some additional attributes appropriate to the derived type.

Examples:

• a array is a vector with a dim“dimensions” attribute

• a matrix is a 2-D array

• a dataframe is a matrix with column (field) names and row.names

D G Rossiter

Introduction to R 39

Vectorized operations

S works on vectors and matrices as with scalars, with natural extensions of operators,
functions and methods.

> (sample <- seq(1, 10) + rnorm(10))

[1] -0.1878978 1.6700122 2.2756831 4.1454326

[5] 5.8902614 7.1992164 9.1854318 7.5154372

[9] 8.7372579 8.7256403

The ten integers 1 ...10 returned by the call to the seq (sequence) method each have a
different random noise added to them; here the rnorm method also returns ten values.

If one of the vectors is shorter than the other, it is recycled as necessary:

> (samp <- seq(1, 10) + rnorm(5))

[1] -1.23919739 0.03765046 2.24047546 4.89287818

[5] 4.59977712 3.76080261 5.03765046 7.24047546

[9] 9.89287818 9.59977712

D G Rossiter

Introduction to R 40

Objects and classes

• S is an object-oriented computer language

• Everything in S is an object; every object has a class

• The class determines the way in which it may be manipulated

• Generic methods (e.g., summary, str) dispatch by the class

> class(seq(1:10)); class(seq(1,10, by=.01)); class(letters)

[1] "integer"

[1] "numeric"

[1] "character"

> class(diag(10)); class(iris); class(lm)

[1] "matrix"

[1] "data.frame"

[1] "function"

D G Rossiter

Introduction to R 41

Examples

> letters; letters + 3

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"

[20] "t" "u" "v" "w" "x" "y" "z"

Error in letters + 3 : non-numeric argument to binary operator

> str(letters); str(diag(10)); str(iris)

chr [1:26] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" ...

num [1:10, 1:10] 1 0 0 0 0 0 0 0 0 0 ...

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

D G Rossiter

Introduction to R 42

Matrices

> (cm <- c(35,14,11,1,4,11,3,0,12,9,38,4,2,5,12,2))

[1] 35 14 11 1 4 11 3 0 12 9 38 4 2 5 12 2

> dim(cm)

NULL

Initially, the vector has no dimensions; these are added with the dim function:

> dim(cm) <- c(4, 4)

> print(cm)

[,1] [,2] [,3] [,4]

[1,] 35 4 12 2

[2,] 14 11 9 5

[3,] 11 3 38 12

[4,] 1 0 4 2

> dim(cm)

[1] 4 4

D G Rossiter

Introduction to R 43

Matrix arithmetic

Many S operators can work directly on matrices; there are also typical matrix functions:

• +, -, *, / etc. work element-wise

• matrix multiplication: %*%

• transposition: t function

• inversion: solve function

• spectral decomposition: eigen function

• Singular Value Decomposition: svd function

• . . .

D G Rossiter

Introduction to R 44

Data frames

The fundamental structure for statistical analysis; a matrix with:

1. named columns (roughly, database “fields”) and

2. (optionally) named rows (roughly, database “cases”):

We illustrate with one of R’s example datasets, provided in the base datasets package:

We first display the help file, then load the data, then view the data structure (field names
and types):

> ?trees

> data(trees)

> str(trees)

`data.frame': 31 obs. of 3 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 ...

D G Rossiter

Introduction to R 45

Accessing fields in a data frame

Using the $ operator:

> summary(trees$Volume)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.2 19.4 24.2 30.2 37.3 77.0

This $ operator exposes the field name.

D G Rossiter

Introduction to R 46

Accessing a dataframe with matrix operators

The dataframe is just a special matrix, so:

> trees[1,] # one case, i.e. the first tree

Girth Height Volume

1 8.3 70 10.3

> trees[,2] # all cases (trees), second field (heights)

[1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69

[15] 75 74 85 86 71 64 78 80 74 72 77 81 82 80

[29] 80 80 87

> trees[1,2] # one field of one case: height of first tree

[1] 70

D G Rossiter

Introduction to R 47

> trees[1:3,] # first three cases (trees), all fields

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

> head(trees[,c(1,3)]) # first and third fields; `head' shows first six

Girth Volume

1 8.3 10.3

2 8.6 10.3

3 8.8 10.2

4 10.5 16.4

5 10.7 18.8

6 10.8 19.7

> trees[1,"Height"] # named field (i.e., matrix column)

[1] 70

D G Rossiter

Introduction to R 48

Factors

• Variables with a limited number of discrete values (categories) are called S factors.

• Internally they are stored as integers but each has a text name.

• They are handled properly by R functions and methods (they are not integers!).

– Unordered factors: no intrinsic order
– Ordered factors: intrinsic order relation, > etc. make sense

D G Rossiter

Introduction to R 49

Example of factors (1/2)

Suppose we have given three tests to each of three students, each with a numeric ID, and
we want to compare the students. We might enter the data frame as follows:

> student <- rep(c(700123, 131444, 201113), 3)

> score <- c(9, 6.5, 8, 8, 7.5, 6, 9.5, 8, 7)

> tests <- data.frame(cbind(student, score))

> str(tests)

'data.frame': 9 obs. of 2 variables:

$ student: num 700123 131444 201113 700123 131444 ...

$ score : num 9 6.5 8 8 7.5 6 9.5 8 7

The data type of student is numeric – this can lead to absurdities:

> lm(score ~ student, data=tests)

Coefficients:

(Intercept) student

6.682e+00 3.022e-06

Meaningless!

D G Rossiter

Introduction to R 50

Example (2/2)

Convert to a factor: the student number is just an ID; use as.factor:

> tests$student <- as.factor(tests$student)

> levels(tests$student)

[1] "131444" "201113" "700123"

> str(tests)

'data.frame': 9 obs. of 2 variables:

$ student: Factor w/ 3 levels "131444","201113",..: 3 1 2 3 1 2 3 1 2

$ score : num 9 6.5 8 8 7.5 6 9.5 8 7

> lm(score ~ student, data=tests)

(Intercept) student201113 student700123

7.3333 -0.3333 1.5000

This is a meaningful one-way linear model, showing the difference in mean scores of
students 201113 and 700123 from student 131444 (the intercept).

D G Rossiter

Introduction to R 51

Data manipulation

One of the strengths of R is the ability to manipulate data.

This is especially useful for automatic identification of suspected errors, outlier detection,
data transformations, subsetting on a factor . . .

D G Rossiter

Introduction to R 52

Subsetting on a logical expression

Find the tallest trees using the subset function:

> sort(trees$Height)

> subset(trees, Height >= 80)

[1] 63 64 65 66 69 70 71 72 72 74 74 75 75 75 76 76 77 78 79 80 80 80 80 80 81 81

[27] 82 83 85 86 87

Girth Height Volume

5 10.7 81 18.8

6 10.8 83 19.7

9 11.1 80 22.6

17 12.9 85 33.8

18 13.3 86 27.4

22 14.2 80 31.7

26 17.3 81 55.4

27 17.5 82 55.7

28 17.9 80 58.3

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0

D G Rossiter

Introduction to R 53

Another way . . .

Can use logical expression as subscripts:

> (trees.tall <- trees[trees$Height >= 80 ,])

Girth Height Volume

5 10.7 81 18.8

6 10.8 83 19.7

9 11.1 80 22.6

17 12.9 85 33.8

18 13.3 86 27.4

22 14.2 80 31.7

26 17.3 81 55.4

27 17.5 82 55.7

28 17.9 80 58.3

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0

D G Rossiter

Introduction to R 54

Identifying with a logical expression

Which are the tallest trees? Save indices for later use.

Use the which function to find the indices:

> (trees.tall.ix <- which(trees$Height >= 80))

> trees[trees.tall.ix,]

[1] 5 6 9 17 18 22 26 27 28 29 30 31

Girth Height Volume

5 10.7 81 18.8

6 10.8 83 19.7

9 11.1 80 22.6

17 12.9 85 33.8

18 13.3 86 27.4

22 14.2 80 31.7

26 17.3 81 55.4

27 17.5 82 55.7

28 17.9 80 58.3

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0
D G Rossiter

Introduction to R 55

More complicated logical expression

Find very thin trees:

> trees$hg <- trees$Height/trees$Girth

> sort(trees$hg)

[1] 4.223301 4.444444 4.444444 4.469274 4.500000 4.637681 4.682081 4.685714

[9] 4.723926 5.103448 5.182482 5.571429 5.633803 5.736434 5.897436 6.000000

[17] 6.250000 6.466165 6.589147 6.666667 6.666667 6.696429 6.818182 6.857143

[25] 6.991150 7.159091 7.207207 7.558140 7.570093 7.685185 8.433735

> summary(trees$hg)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.223 4.705 6.000 5.986 6.838 8.434

> sd(trees$hg)

> (trees.thin <- subset(trees, hg > (mean(trees$hg) + sd(trees$hg))))

Girth Height Volume hg

1 8.3 70 10.3 8.433735

2 8.6 65 10.3 7.558140

5 10.7 81 18.8 7.570093

6 10.8 83 19.7 7.685185

9 11.1 80 22.6 7.207207

D G Rossiter

Introduction to R 56

Visualizing the thin trees

> plot(trees$Height ~ trees$Girth, xlab="Girth", ylab="Height",

main="Thin trees", pch=20, cex=2,

col=ifelse(trees$hg > (mean(trees$hg) + sd(trees$hg)), "red", "darkgreen"))

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

8 10 12 14 16 18 20

65
70

75
80

85

Thin trees

Girth

H
ei

gh
t

D G Rossiter

Introduction to R 57

Import/Export

Reference: “R Data Import/Export”, R manual installed with R; available under Help menu

Most common interchange format for flat-files: Comma-Separated Values (CSV)

D G Rossiter

Introduction to R 58

CSV file import

Look at file in plain-text editor; note header line, and the , field separator

x,y,cadmium,elev,dist,om,ffreq,soil,lime,landuse

181072,333611,11.7,7.909,0.00135803,13.6,1,1,1,Ah

181025,333558,8.6,6.983,0.0122243,14,1,1,1,Ah

181165,333537,6.5,7.8,0.103029,13,1,1,1,Ah

181298,333484,2.6,7.655,0.190094,8,1,2,0,Ga

181307,333330,2.8,7.48,0.27709,8.7,1,2,0,Ah

181390,333260,3,7.791,0.364067,7.8,1,2,0,Ga

Import with read.csv:

> ds <- read.csv("test.csv")

> str(ds)

(results on next slide)

D G Rossiter

Introduction to R 59

Result of CSV file input

'data.frame': 6 obs. of 10 variables:

$ x : int 181072 181025 181165 181298 181307 181390

$ y : int 333611 333558 333537 333484 333330 333260

$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3

$ elev : num 7.91 6.98 7.8 7.66 7.48 ...

$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...

$ om : num 13.6 14 13 8 8.7 7.8

$ ffreq : int 1 1 1 1 1 1

$ soil : int 1 1 1 2 2 2

$ lime : int 1 1 1 0 0 0

$ landuse: Factor w/ 3 levels "Ah","Ga","Ga ": 1 1 1 2 1 3

Note that read.csv could determine field landuse is a factor.

But it was not able to do so for the factors ffreq, soil, lime. So, we have to convert:

> ds$ffreq <- as.factor(ds$ffreq)

D G Rossiter

Introduction to R 60

General file import

Very flexible read.table function:

• field delimeters

• integer / decimal separator

• Header line(s)

• Skip lines

• Specify data types

D G Rossiter

Introduction to R 61

File export

Very flexible write.table function.

> write.table(round(as.data.frame(kxy), 4), file="KrigeResult.csv",

sep=",", quote=T, row.names=F,

col.names=c("E", "N", "LPb", "LPb.var"))

There are also ways to export to spreadsheets, databases, images, GIS coverages . . .

D G Rossiter

Introduction to R 62

Statistical models in S

• Specified in symbolic form with model formulae

• These formulae are arguments to many statistical methods:

– lm (linear models)
– glm (generalised linear models)
– gstat methods such as variogram and krige

• Can also be used in other contexts:

– Base graphics methods such as plot and boxplot

– Trellis graphics methods such as levelplot

D G Rossiter

Introduction to R 63

Form of statistical models

• Left-hand side: (mathematically) dependent variable

• Formula operator ~

• Right-hand side: (mathematically) independent variable(s)

The simplest use is in simple linear regression:

> model <- lm(Volume ~ Height, data=trees); summary(model)

> # equivalent to: model <- lm(trees$Volume ~ trees$Height)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.124 29.273 -2.98 0.00583

Height 1.543 0.384 4.02 0.00038

So, the tree volume is modelled as a linear function of the tree height.

D G Rossiter

Introduction to R 64

Model formula operators

• Additive effects: +

> model <- lm(Volume ~ Height + Girth, data=trees); summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.988 8.638 -6.71 2.7e-07

Height 0.339 0.130 2.61 0.014

Girth 4.708 0.264 17.82 < 2e-16

• Interactions: *

> model <- lm(Volume ~ Height * Girth, data=trees); summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.3963 23.8358 2.91 0.00713

Height -1.2971 0.3098 -4.19 0.00027

Girth -5.8558 1.9213 -3.05 0.00511

Height:Girth 0.1347 0.0244 5.52 7.5e-06

D G Rossiter

Introduction to R 65

• Crossing factors to a specified degree

> model <- lm(Volume ~ (Height + Girth)^2, data=trees)

In this case it’s the same as Height * Girth, because there are only two factors.

• Nested models: /

> model <- lm(Volume ~ Height / Girth, data=trees)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.23114 7.74157 -0.03 0.9764

Height -0.41218 0.12316 -3.35 0.0023

Height:Girth 0.06070 0.00266 22.79 <2e-16

• Remove terms: -; for example, the intercept:

> model <- lm(Volume ~ Height -1, data=trees); summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Height 0.4047 0.0354 11.4 1.9e-12

D G Rossiter

Introduction to R 66

• Arithmetic in models: I() method if ambiguous

> model <- lm(Volume ~ I(Height^2), data=trees); summary(model)

> # otherwise would cross height with itself in the model

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -30.19193 15.02843 -2.01 0.05393

I(Height^2) 0.01038 0.00255 4.07 0.00033

D G Rossiter

Introduction to R 67

Updating models

Use the update function, previous LHS and RHS represented by .

> model <- lm(Volume ~ Height + Girth, data=trees); summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.988 8.638 -6.71 2.7e-07

Height 0.339 0.130 2.61 0.014

Girth 4.708 0.264 17.82 < 2e-16

> model.2 <- update(model, . ~ . - Girth); summary(model.2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.124 29.273 -2.98 0.00583

Height 1.543 0.384 4.02 0.00038

D G Rossiter

Introduction to R 68

Model objects: structure and access

• Modelling functions like lm return an object with a class

• You can look directly at the structure . . .

• . . . but it is preferable to use access methods such as coefficients, residuals,
fitted.

> model <- lm(Volume ~ log(Height), data=trees); class(model); str(model)

[1] "lm"

List of 12

$ coefficients : Named num [1:2] -461 114

..- attr(*, "names")= chr [1:2] "(Intercept)" "log(Height)"

$ residuals : Named num [1:31] -10.928 -2.511 0.939 -8.028 -19.005 ...

..- attr(*, "names")= chr [1:31] "1" "2" "3" "4" ...

...

D G Rossiter

Introduction to R 69

Using access functions

These extract information from the fitted model.

> summary(residuals(model))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.09e+01 -9.77e+00 -2.51e+00 -4.73e-16 1.22e+01 3.11e+01

Other important access functions: summary, fitted, coef, anova, effects, vcov.

D G Rossiter

Introduction to R 70

Factors

• For categorical variables (can take only a defined set of values)

– unordered (nominal), e.g. land cover class
– ordered (ordinal), e.g. vegetation density class

• S calls these factors

• Methods (especially modelling) take appropriate action

• These are converted to contrasts in the design matrix of linear (and other) models

D G Rossiter

Introduction to R 71

Topics – Part 3

1. R base graphics

2. Scripts

3. User-defined functions

4. Programming in R: control structures

5. The R class structure; object-oriented programming

6. The ggplot2 graphics system

7. Some advanced statistical functions

8. Going further in R: task views, textbooks, tutorials

D G Rossiter

Introduction to R 72

R Graphics

R has a very rich visualization environment. There are (at least) four graphics systems:

1. Base graphics system: default graphics package (always loaded)

2. Trellis graphics: lattice package

3. “Grammar of Graphics”ggplot2 package

4. Grid graphics

R graphics are highly customizable; it is usual to write small scripts to get the exact
output you want.

Graphs may be displayed on screen or written directly to files for inclusion in documents.

D G Rossiter

Introduction to R 73

Base graphics

• Simple to learn

• Can make simple plots very easily

• Can also customize at will

• Some methods start a new plot, e.g. plot, hist, boxplot

• Other add to an existing (open) plot, e.g. points, lines, rug

D G Rossiter

Introduction to R 74

Example of default base graphics

> data(iris); with(iris, plot(Petal.Width ~ Petal.Length))

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

P
et

al
.W

id
th

D G Rossiter

Introduction to R 75

Example of customized base graphics

●●● ●●

●

●

●●

●

● ●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

● ●● ●

●

● ●

●●

●

●

●

●

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Anderson Iris data

Petal length (cm)

P
et

al
 w

id
th

 (
cm

)

Centroids: mean (red) and median (blue)

Three species of Iris:
●

●

●

setosa
versicolor
virginica

D G Rossiter

Introduction to R 76

Code for previous graph

> attach(iris)

> plot(Petal.Length, Petal.Width, pch=20, cex=1.2,

xlab="Petal length (cm)", ylab="Petal width (cm)",

main="Anderson Iris data",

col=c("slateblue", "firebrick", "darkolivegreen")[as.numeric(Species)]

)

> abline(v=mean(Petal.Length), lty=2, col="red")

> abline(h=mean(Petal.Width), lty=2, col="red")

> abline(v=median(Petal.Length), lty=2, col="blue")

> abline(h=median(Petal.Width), lty=2, col="blue")

> grid()

> points(mean(Petal.Length), mean(Petal.Width), cex=2, pch=23, col="black", bg="red")

> points(median(Petal.Length), median(Petal.Width), cex=2, pch=23,

col="black", bg="blue")

> title(sub="Centroids: mean (green) and median (gray)")

> text(1, 2.4, "Three species of Iris", pos=4, col="navyblue")

> legend(1, 2.4, levels(Species), pch=20, bty="n",

col=c("slateblue","firebrick", "darkolivegreen"))

> detach(iris)

Note that plot starts a new graph; all the others add elements to the plot.

D G Rossiter

Introduction to R 77

Trellis graphics

An R implementation of the trellis graphics system developed at Bell Labs by Cleveland is
provided by packakge lattice.

It is especially intended for multivariate visualization

• Harder to learn than R base graphics

• Can produce higher-quality graphics, especially for multivariate visualisation when the
relationship between variables changes with some grouping factor; this is called
conditioning the graph on the factor

• It uses model formulae similar to the statistical formulae to specify the variables to be
plotted and their relation in the plot.

• Multiple items on one plot are specified with user-written panel functions

D G Rossiter

Introduction to R 78

Example of trellis graphics
All species

Petal.Length

P
et

al
.W

id
th

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

●●● ●●

●

●

●●

●

● ●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

● ●● ●

●

● ●

●●

●

●

●

●

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

setosa
versicolor
virginica

●

●

●

Split by species

Petal.Length

P
et

al
.W

id
th

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

●●●●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●●●●

●

●

●●●●

●

●●

●●

●

●

●

●

●●●●

setosa

1 2 3 4 5 6 7

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

versicolor

1 2 3 4 5 6 7

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

virginica

Note the right plot: it has been conditioned on a factor, namely the species.

D G Rossiter

Introduction to R 79

Code for previous graph

> xyplot(Petal.Width ~ Petal.Length, data=iris, groups=Species, auto.key=T)

> xyplot(Petal.Width ~ Petal.Length | Species, data=iris, groups=Species)

Note the | in the formula; this means “conditioned on”.

D G Rossiter

Introduction to R 80

Grammar of graphics

• A completely new way to think about composing statistical graphs

• Text: Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis, Use R! Springer.

• Web site: http://ggplot2.org

• How are statistical graphics a “grammar” (íÕ)?

– a mapping from data to aesthetic attributes (colour, shape, size) . . .
– . . . of geometric objects (points, lines, bars).
– data may also be statistically-transformed
– the graph must be drawn on a coordinate system
– subsets of the data can be shown in sub-windows (“faceting”)

• R code to specify can be quite complex

• But the qplot“quick plot” method can be used for many simple cases (analogous to
plot of base graphics).

D G Rossiter

http://ggplot2.org

Introduction to R 81

Example of ggplot2 graphics

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

1.5

2.0

2.5

0 250 500 750 1000
dist.m

lo
g1

0(
le

ad
)

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

1.5

2.0

2.5

0 250 500 750 1000
dist.m

lo
g1

0(
le

ad
) ffreq

●

●

●

1

2

3

D G Rossiter

Introduction to R 82

Code for previous graph

> library(sp); data(meuse)

> qplot(x = dist.m, y = log10(lead), data = meuse,

+ geom = c("point", "smooth", method='loess')

> qplot(x = dist.m, y = log10(lead), data = meuse,

+ colour = ffreq, geom = c("point", "smooth"), method="loess")

• Data is the meuse dataframe

• two geometries are specified: (1) the points (a scatterplot); (2) a smooth line

• the coordinate system is by default a scatterplot (x-y plot)

• the x and y axes are the two named variables; the Pb content is log-transformed

• in the right-hand graph the points are coloured by a categorical variable (flood
frequency class)

• the smooth line and confidence limits are computed by locally-adjusted least squares

D G Rossiter

Introduction to R 83

Grid graphics

A low-level graphics programming language by Paul Murrel. lattice is written in grid.
Allows fine control of graphic output.

Complete information on author’s R graphics page:

http://www.stat.auckland.ac.nz/~paul/grid/grid.html

and in his book:

http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

D G Rossiter

http://www.stat.auckland.ac.nz/~paul/grid/grid.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

Introduction to R 84

Programming R

R is a full-featured, modern programming language. This can be accessed four ways, in
increasing level of complexity:

S was developed by Chambers for “programming with data”

1. Commands: at the > prompt, typed or cut-and-paste

• These can use control structures for looping, conditional execution, and repetition

2. User-written scripts

3. User-defined functions

4. User-contributed packages

D G Rossiter

Introduction to R 85

Control structures

S has ALGOL-like control structures:

• if ...else

• for; note that vectorized functions or methods often are preferable

• while, repeat

• break, next

and within an expression:

• the ifelse function

D G Rossiter

Introduction to R 86

Example of the ifelse function

Here it is used to select a plotting colour:

> x <- rnorm(100); y <- runif(100, -3, 3)

> plot(y ~ x, asp=1, col=ifelse(y > x, "red", "green"), pch=20, cex=1.5)

> abline(0, 1, lty=2)

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

D G Rossiter

Introduction to R 87

Example of the while control structure

For some simulation we want to draw a sample from the normal distribution but make sure
there is an extreme value, so we repeat the sampling until we get what we want:

> while (max(abs(sample <- rnorm(100))) < 3) print("No extreme")

> range(sample)

[1] "No extreme"

[1] "No extreme"

[1] "No extreme"

[1] -3.2648 2.5457

D G Rossiter

Introduction to R 88

Why use scripts?

• For reproducible processing

– Especially for complicated graphics
– Also for multi-step analyses
– For simulations where each run is different, due to randomness

• Can document the steps internally (as S comments)

D G Rossiter

Introduction to R 89

Writing and running scripts

1. Prepare script in some editor

• Editor component of IDE, e.g., RStudio
• Plain-text editor (no formatting!)
• Editor built into R: some help with syntax, commands
• Emacs + ESS (“Emacs speaks statistics”) http://ess.r-project.org/

2. Run with the source function or via editor commands

• e.g., RStudio “Run Lines” or “Run Region” menu commands

D G Rossiter

http://ess.r-project.org/

Introduction to R 90

RStudio screenshot with script and console

D G Rossiter

Introduction to R 91

Example

1. Enter the following in a plain text file:

draw two independent normally-distributed samples

x <- rnorm(100, 180, 20); y <- rnorm(100, 180, 20)

scatterplot

plot(x, y)

correlation: should be 0

cor.test(x, y, conf=0.9)

2. Save with name e.g. test.R (convention: .R extension)

3. In R, source the file (or send from the editor):

> source("test.R")

t = -0.1925, df = 98, p-value = 0.8477

alternative hypothesis: true correlation is not equal to 0

90 percent confidence interval:

-0.18433 0.14650

sample estimates:

cor

-0.019446

D G Rossiter

Introduction to R 92

A more complicated example

Enter this in a script file; save as test.R.

see how correlation coefficients are distributed in uncorrelated random samples

m <- 1000 # number of runs

n <- 100 # size of random samples

results <- rep(0, m)

for (i in 1:m) {

x <- rnorm(100); y <- rnorm(100) # default mu=0, sigma=1

results[i] <- cor(x, y)

}

summary(results)

tmp <- qplot(results, binwidth=0.02)

print(tmp + geom_bar(colour="white", fill="darkgreen", binwidth=0.02) + geom_rug())

Run the script:

> source('test.R')

The script can be run several times, also with different numbers of runs and sample sizes,
to compare the results.

D G Rossiter

Introduction to R 93

Results

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.382500 -0.071820 -0.001889 -0.001115 0.072200 0.355600

D G Rossiter

Introduction to R 94

User-defined functions

• These are like R built-in functions but simpler

• Defined as objects in the workspace (not in the system)

• Why?

– R may not have a function or method to compute what you want
– You want to expand a script with arguments to apply the script to any suitable

object

D G Rossiter

Introduction to R 95

Simple example of user-defined function

There is no R function to compute the harmonic (geometric) mean of a vector, but we
can define it easily enough. For a vector v with n elements:

v̄h =
 ∏
i=1...n

vi

1/n

This is computed by taking logarithms, dividing by the length, and exponentiating.

The function function is used to define a function (!); it can then be assigned to an
object in the workspace. The function has one argument, here named v:

> hm <- function(v) exp(sum(log(v))/length(v))

> class(hm)

> hm(1:99); mean(1:99)

[1] "function"

[1] 37.6231

[1] 50

D G Rossiter

Introduction to R 96

A better version

A function should check for valid inputs. This shows the use of the if, else if, else

control structure:

> hm <- function(v) {

if (!is.numeric(v)) {

print("Argument must be numeric"); return(NULL)

}

else if (any(v <= 0)) {

print("All elements must be positive"); return(NULL)

}

else return(exp(sum(log(v))/length(v)))

}

> hm(letters)

> hm(c(-1, -2, 1, 2))

> hm(1:99)

[1] "Argument must be numeric"

NULL

[1] "All elements must be positive"

NULL

[1] 37.6231

D G Rossiter

Introduction to R 97

Another example

The “correlation of two random normal vectors” script can be converted to a function; the
arguments are the number of runs and sample size:

> corr.two.random.normal <- function(m =1000, n=100) {

+ results <- rep(0, m)

+ for (i in 1:m) {

+ x <- rnorm(100); y <- rnorm(100) # default mu=0, sigma=1

+ results[i] <- cor(x, y)

+ }

+ summary(results)

+ tmp <- qplot(results, binwidth=0.02)

+ print(tmp + geom_bar(colour="white", fill="darkgreen", binwidth=0.02) + geom_rug())

+ }

The function is now defined in the workspace; to call it:

> corr.two.random.normal() # with defaults

> corr.two.random.normal(256, 20) # specify m and n

Try it! The second histogram will be much more erratic than the first.

D G Rossiter

Introduction to R 98

Some advanced statistical functions

This is a very small sample of what is available.

D G Rossiter

Introduction to R 99

Modelling

• Non-linear model fitting: nls

• Non-linear mixed-effects models: nlme package

• Generalized linear models (GLM): glm

• Robust fitting of linear models: lqs, lm.ridge etc.

• Local (smooth) fitting: loess

• Stepwise regression: step

• Regression trees: trees, rpart packages

• Principal component, partial least squares: prcomp, pls packages

• Random forests: randomForest package

D G Rossiter

Introduction to R 100

Simulation

• Bootstrapping: boot package

D G Rossiter

Introduction to R 101

Time and space

• Time-series analysis: ts, arima etc.

• Spatially-explicit objects: sp package

• Geostatistics: gstat, geoR, spatial packages

• Space-time geostatistics: spacetime package

• Point-pattern analysis: spatstat, spatial packages

• Areal spatial data analysis (like GEODA): spdep package

• Interface to GIS: rgdal, RSAGA packages

• Image processing: raster package

D G Rossiter

Introduction to R 102

Resources for learning R

R is very popular and widely-used; in the spirit of the open-source movement many working
statisticians and application scientists have written documentation.

• Introductions and tutorials

• On-line help (within R and on the Internet)

• Contributed documentation

• Textbooks

• Task views

• R Journal, Mailing lists, user’s conference

D G Rossiter

Introduction to R 103

General introductions

• Venables, W. N. ; Smith, D. M. ; R Development Core Team, 2014. An
Introduction to R (Notes on R: A Programming Environment for Data Analysis and
Graphics), updated at each version of R

http://www.cran.r-project.org; also included with R distribution

The standard introduction. This links to:

• Hornik, K. 2007. R FAQ: Frequently Asked Questions on R. Also updated with each
version.

What is R? Why ‘R’? Availability, machines, legality, documentation, mailing lists . . .

These are updated with each R release.

D G Rossiter

http://www.cran.r-project.org

Introduction to R 104

On-line help

• Within the R environment: help method, abbreviated ?; help.search method

• On the internet

– RSeek: http://www.rseek.org/
– RSiteSearch method

D G Rossiter

http://www.rseek.org/

Introduction to R 105

RSeek results

D G Rossiter

Introduction to R 106

RSiteSearch method results

D G Rossiter

Introduction to R 107

Textbooks using R

More and more texts are using R code to illustrate their statistical analyses.

• Dalgaard, P. 2002. Introductory Statistics with R. Springer Verlag.

This is a clearly-written introduction to statistics, using R in all examples.

• Venables, W. N. & Ripley, B. D. 2002. Modern applied statistics with S. New
York: Springer-Verlag, 4th edition; http://www.stats.ox.ac.uk/pub/MASS4/

Presents a wide variety of up-to-date statistical methods (including spatial statistics)
with algorithms coded in S; includes an introduction to R, R programming, and R
graphics.

• Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Newbury Park:
Sage.

A social scientist explains how to use R for regression analysis, including advanced
techniques; this is a companion to his text: Fox, J. 1997. Applied regression, linear
models, and related methods. Newbury Park: Sage

D G Rossiter

http://www.stats.ox.ac.uk/pub/MASS4/

Introduction to R 108

The UseR! series

Springer is publishing a series of practical introductions with R code to topics such as:

• data manipulation

• Bayesian analysis

• spatial data anlysis

– Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V 2008. Applied Spatial
Data Analysis with R : Springer; UseR! series. http://www.asdar-book.org/

• time-series

• interactive graphics

List at http://www.springer.com/series/6991

D G Rossiter

http://www.asdar-book.org/
http://www.springer.com/series/6991

Introduction to R 109

Technical Notes using R

I have written a number of technical notes showing how to accomplish some statistical
tasks with R; the full list is at

http://www.css.cornell.edu/faculty/dgr2/pubs/list.html#pubs_m_R

These include general data analysis, logistic regression, confusion matrices, co-kriging,
partioning transects, and fitting rational functions.

D G Rossiter

http://www.css.cornell.edu/faculty/dgr2/pubs/list.html#pubs_m_R

Introduction to R 110

R Task Views

Some applications are covered in so-called Task Views, on-line at
http://cran.r-project.org/web/views/index.html.

These are a summary by a task maintainer of the facilities in R (e.g., which packages and
functions to use) to accomplish certain tasks. Examples:

• Analysis of Spatial Data
http://cran.r-project.org/web/views/Spatial.html

• Multivariate Statistics
http://cran.r-project.org/web/views/Multivariate.html

D G Rossiter

http://cran.r-project.org/web/views/index.html
http://cran.r-project.org/web/views/Spatial.html
http://cran.r-project.org/web/views/Multivariate.html

Introduction to R 111

Keeping up with developments in R

R is a dynamic environment, with a large number of dedicated scientists working to
make it both a rich statistical computing environment and a modern programming
language.

Daily new and modified packages added to CRAN; new versions of the R base
appear 2–4x yr-1

• R Journal: about 4x yr-1; http://journal.r-project.org/

News, announcements, tutorials, programmer’s tips, bibliographies

• Journal of Statistical Software; http://www.jstatsoft.org/

(continued . . .)

D G Rossiter

http://journal.r-project.org/
http://www.jstatsoft.org/

Introduction to R 112

. . .

• Mailing lists: “Mailing Lists” link at CRAN:

– R-announce: major announcements, e.g. new versions
– R-packages: announcements of new or updated packages
– R-help: discussion about problems using R, and their solutions. The R gurus monitor

this list and reply as necessary. A search through the archives is a good way to see if
your problem was already discussed.

• useR! user’s conference; proceedings on-line; tutorials, workshops, user presentations,
thematic sessions

D G Rossiter

Introduction to R 113

Topics – Part 4

1. Reproducible research and literate programming

2. The Tidyverse

D G Rossiter

Introduction to R 114

Reproducible research and literate programming

Reproducible research: “research papers with accompanying software tools that allow
the reader to directly reproduce the results and employ the computational methods that are
presented in the research paper.”

Literate programming:

• both code and comments in the same document; code is executed and produces the
results seen in the document; no cut-and-paste

• if data changes, document changes (code is the same, results are different!)

See: Rossiter, DG 2012. Technical Note: Literate Data Analysis using the R environment
for statistical computing and the knitr package 26-December-2012, 35 pp;
http://www.css.cornell.edu/faculty/dgr2/pubs/list.html#pubs_m_R

D G Rossiter

http://www.css.cornell.edu/faculty/dgr2/pubs/list.html#pubs_m_R

Introduction to R 115

The Tidyverse

• “[A]n opinionated collection of R packages designed for data science1

– The “opinion” of Hadley Wickham
– Main packages dplyr, tidyr, readr, stringr, tibble, ggplot2

• Well-explained in the (free) on-line text R for Data Science2

• Defines a syntax for pipes (magrittr package), for sequences of operations without
having to define intermediate workspace objects

• Defines the tibble: “a modern re-imagining of the data frame, keeping what time has
proven to be effective, and throwing out what it has not.”

1https://www.tidyverse.org
2https://r4ds.had.co.nz

D G Rossiter

https://www.tidyverse.org
https://r4ds.had.co.nz

Introduction to R 116

Pipes
Example:

the_data <-

read.csv('/path/to/data/file.csv') %>%

subset(variable_a > x) %>%

transform(variable_c = variable_a/variable_b) %>%

head(100)

• Only one workspace object (the data) is created

• the results of each expression are passed to the next with the pipe operator %>%.

Exposing variables in a dataframe with the %$% operator :

data(iris) # Edgar Anderson's Iris Data, in datasets package

iris %>%

subset(Sepal.Length > mean(Sepal.Length)) %$%

cor(Sepal.Length, Sepal.Width)

See https://magrittr.tidyverse.org for more examples and complete syntax.

D G Rossiter

https://magrittr.tidyverse.org

	1: Getting Started
	1.1. Installing R and RStudio
	1.2. RStudio Features (1/2)
	1.3. RStudio Features (2/2)
	1.4. RStudio Screenshot
	1.5. Basic interaction with the R console
	1.6. First interaction with the console

	2: The S language: expressions, assignment, functions
	2.1. Origin of S
	2.2. Origin of R
	2.3. Expressions
	2.4. Assignment
	2.5. Workspace objects
	2.6. Functions and Methods

	3: The R help system, R manuals, on-line R help
	3.1. Help on functions or methods
	3.2. R manuals
	3.3. on-line R help
	3.4. StackOverflow
	3.5. R Task Views

	4: Contributed packages and example datasets
	4.1. Installing packages
	4.2. Loading packages
	4.3. How do I find the method to do what I want?
	4.4. Example data
	4.5. Example

	5: Data types and structures
	5.1. Basic data types
	5.2. Derived data types
	5.3. Vectorized operations
	5.4. Objects and classes
	5.5. Matrices
	5.6. Matrix arithmetic
	5.7. Data frames
	5.8. Accessing fields in a data frame
	5.9. Accessing a dataframe with matrix operators
	5.10. Factors
	5.11. Example of factors (1/2)

	6: Data manipulation
	6.1. Subsetting on a logical expression
	6.2. Identifying with a logical expression
	6.3. More complicated logical expression

	7: Import/Export
	7.1. CSV file import
	7.2. General file import
	7.3. File export

	8: Statistical models in S
	8.1. Form of statistical models
	8.2. Model formula operators
	8.3. Updating models
	8.4. Model objects: structure and access
	8.5. Factors

	9: R graphics
	9.1. Base graphics
	9.2. Trellis graphics
	9.3. Grammar of graphics
	9.4. Grid graphics

	10: Programming R
	10.1. Control structures
	10.2. Why use scripts?
	10.3. Writing and running scripts
	10.4. User-defined functions

	11: Some advanced statistical functions
	11.1. Modelling
	11.2. Simulation
	11.3. Time and space

	12: Resources for learning R
	12.1. General introductions
	12.2. On-line help
	12.3. Textbooks using R
	12.4. The UseR! series
	12.5. Technical Notes using R
	12.6. R Task Views
	12.7. Keeping up with developments in R

	13: Reproducible research and literate programming
	14: The Tidyverse
	14.1. Pipes

