Geographically Weighted Models

D G Rossiter

Cornell University, Soil & Crop Sciences Section
Nanjing Normal University, Geographic Sciences Department

April 7, 2022
1 Spatially-distributed models
 Kernel functions
 The bandwidth problem

2 Geographically-weighted models
 Geographically-weighted regression
 GWR calculation
 GWR example 1 – Northeast USA climate
 GWR Example 2 – Georgia (USA) poverty

3 Extensions to GWR
Geographically-weighted models

1. Spatially-distributed models
 Kernel functions
 The bandwidth problem

2. Geographically-weighted models
 Geographically-weighted regression
 GWR calculation
 GWR example 1 – Northeast USA climate
 GWR Example 2 – Georgia (USA) poverty

3. Extensions to GWR

References
When considering **spatially-distributed attributes**, we can view these in two ways:

Global all spatial units are considered together

- aim: to characterize the entire population with one model (statistical summaries, regressions, . . .)

Local a **geographically-compact subset** of spatial units are considered together

- aim: to see if there is **spatial heterogeneity** within the model . . .
- . . . and if so, at which **scale**
- general term: **Geographically-weighted (GW) models**
Global vs. local – example

- Closely related to the Modifiable Area Unit Problem (MAUP)
 - Example: **Summary statistics** at different resolutions
 - MAUP: nation, state, county, town, ward ... proportion of votes per candidate
 - GW models: proportion of different soil types over the entire map vs. sub-maps; e.g., northern vs. southern Tompkins County
 - Example: Empirical-statistical models example: **regression on covariates**
 - MAUP: regression model of votes vs. demography
 - GW models: relation of soil properties to covariates (elevation, slope, ...)
Why build local models?

- **Detect** whether there is spatial heterogeneity in what is being studied
- **Detect** the spatial scale of this heterogeneity
- From these, **explain** why
Approaches to local models

Strata Divide area into (multi-)polygons according to some *a priori* stratifying factor
- soil mapping example: pre-defined Major Land Resource Areas

Moving window re-compute summaries, regressions etc. for the observations within some *window*, i.e., restricted neighbourhood
- this neighbourhood moves across the study area

Weighted moving window same, but *weight* the observations
- closer to the window centre receive more weight than further
- requires a *kernel* function defining the weight
- function of *distance* from the centre of the window
Locations of moving-window centres

Several possibilities:

1. **regular tessellation**: centres of pre-defined grids
 - e.g., 10 x 10 km grid
 - result is a model, statistics etc. for each pre-defined grid

2. at **observation points**; may be irregular
 - result is a model, statistics etc. for each observation point and its neighbourhood
Kernel functions – concept

- These define the weights to be given to observations within a window
- Model form: various forms of distance d decay, see next slide
- Parameter: bandwidth h, relation to d
- Can choose between model forms and select bandwidth by cross-validation, see next section
 - But often the model form is set by the knowledge of the target variable

Kernel functions – concept

- These define the weights to be given to observations within a window
- Model form: various forms of distance d decay, see next slide
- Parameter: bandwidth h, relation to d
- Can choose between model forms and select bandwidth by cross-validation, see next section
 - But often the model form is set by the knowledge of the target variable

Kernel functions – concept

- These define the weights to be given to observations within a window
- Model form: various forms of distance d decay, see next slide
- Parameter: bandwidth h, relation to d
- Can choose between model forms and select bandwidth by cross-validation, see next section
 - But often the model form is set by the knowledge of the target variable
Kernel functions – model forms

- **Boxcar** \(w_{ij} = 1 \) if \(d_{ij} \leq h \), else \(w_{ij} = 0 \): unweighted within a neighbourhood

- **Bisquare**
 \[w_{ij} = \left(1 - \left(\frac{d_{ij}^2}{h^2}\right)\right)^2 \] if \(d_{ij} \leq h \), else \(w_{ij} = 0 \); inverse square within some neighbourhood

- **Exponential**
 \[w_{ij} = e^{-d_{ij}/h} \] ; considers all the points, with exponentially decaying weight; reaches a weight of 0.5 at \(d = -\log(0.5) \approx 0.693h \)

- **Gaussian**
 \[w_{ij} = e^{-d_{ij}^2/2h^2} \] ; considers all the points, with exponentially decaying weight; reaches a weight of 0.5 at \(d = h\sqrt{-2\log(0.5)} \approx 1.117h \)
Kernel functions compared

Kernel weighting functions

- exponential
- Boxcar
- Gaussian
- bisquare

Geographically Weighted Models
Spatially-distributed models
Kernel functions
The bandwidth problem
Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty
Extensions to GWR
References
• Obviously, we do not want to fit too **narrowly**, because:
 • not enough sample points to reliably calibrate a model;
 • artificial local variability, *not* corresponding to the **process**.
• But we do not want to fit too **broadly**, because this would miss “true” local variability

This is the **bandwidth problem** – it should correspond to the **process** which varies locally.
Bandwidth vs. weights

- the **bandwidth** h parameter in the kernel functions determines the range of influence of points in the regression . . .
- . . . their **relative weights** is determined by the kernel function
The bandwidth can vary across the map or not:

fixed as the *distance parameter* h in the above formulations

- This corresponds to a process with a fixed dependence on distance

adaptive a *proportion* of the points to use for each local fit

- This is appropriate if points are irregularly spread – it ensures that there are enough points to calibrate the regression.
- It also mitigates edge effects with fewer points
Geographically Weighted Models

Spatially-distributed models
Kernel functions
The bandwidth problem

Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty

Extensions to GWR
References

source: [2]
1 Spatially-distributed models
 Kernel functions
 The bandwidth problem

2 Geographically-weighted models
 Geographically-weighted regression
 GWR calculation
 GWR example 1 – Northeast USA climate
 GWR Example 2 – Georgia (USA) poverty

3 Extensions to GWR
Geographically-weighted models

These have:

- any statistical **model form**;
- use a **weighted moving window**;
- a **kernel function** to define the neighbourhood;
- defined **centres**, either on each observation point or a set of prediction points
Geographically-weighted regression (GWR)

- developed by Fotheringham et al. [3];
- an extension of linear or generalized linear regression;
- **GWR fits** the regression equation at each data point . . .
 - . . . based on some *neighbourhood* and . . .
 - . . . a *weighting scheme* (kernel function).
Why use GWR?

- GWR is appropriate if the process being modelled is **spatially non-stationary**.
 - i.e., *the relation is not the same over the whole map*.
- A single global model, although representing the **overall** relation, would miss important **local variations**.
- There should be a **physical/social basis**, i.e., some reason to think there might be non-stationarity.
 - why?, and over what spatial extent? (see “bandwidth problem”)
 - GWR can detect if this is the case . . .
 - . . . but careful for **artefacts** of the method: apparent variability not corresponding to the process, just to random noise.
GWR gives explicit values of:

1. the **bandwidth** within which a local regression should be fit;
 - this is determined by cross-validation
2. the **regression coefficients** at each point
3. the **variability and spatial pattern** of these.
Voting choices:

- e.g., percent for each political party) explained by demographic factors (income, home ownership, age . . .)

Possible model forms:

- **global** model, probably with an spatial autoregressive (SAR) model to account for local correlation
- **GWR** model: different coefficients of each predictor; different importance of predictors in different areas
• **Prediction**
 - It is possible to predict with GWR by evaluating the local formula at each prediction point (not necessarily observation points)
 - “Please also be aware that using GWR for prediction has no good basis anywhere for anything - and the standard errors should not be given any credibility. This is not what GWR is for at all.” – Roger Bivand

• **Modelling**
 - GWR does not account for **local spatial correlation** within each window
 - compare with GLS and SAR models, which do
Spatial prediction *without* GWR

- **Spatial Autoregressive** (SAR) regression models
 - account for local correlations to adjust global model coefficients, but still one model
- **Regression Kriging** (RK): the global trend is fit (multiple regression, SAR, random forests ...) and then adjusted locally by kriging the **residuals** and adding them to the trend prediction.
 - Assumes that the global trend is correct, but affected by local factors.
- **Kriging with External Drift** (KED) in a restricted neighbourhood
 - the trend is re-fit at each prediction point according to some restricted radius;
 - the residuals from this local trend, in the same neighbourhood are at the same time kriged;
 - uses a **model of spatial dependence** (variogram of the residuals)
Global linear regression

- GWR uses the normal OLS formulation:
 - model: \(y_i = \beta_0 + \sum_k \beta_k x_{ik} + \varepsilon_i \)
 - fit from sets of known \((y_i, X_i)\)
 - the errors \(\varepsilon_i\) are I.I.D. and not spatially-correlated
 - solution:
 \[
 \hat{\beta} = (X^T X)^{-1} X^T y
 \]
- GWR does not use Generalized Least Squares (GLS), no accounting for eventual spatial correlation of residuals.
- In a **global** model, all observations participate equally in a single model.
- GWR builds a set of **local** models, one per data point
- **All** observations participate in each model, but **un-equally** and differently for each model
OLS but in a **moving window**:

- the model is **separately fit at each data point** with coordinates \((u_i, v_i)\) and known values \((y_i, X_i)\)
- \(W(u_i,v_i)\) is a **matrix** of the **weights** of the known points to be used to fit the model for observation \(i\)
 - \(W(u_i,v_i)\) is a **diagonal** matrix, **no correlation** between weights (compare GLS)
 - All observations are considered but some may have 0 weight
 - Weights determined by a **kernel function** (see below)

- **Solution** by OLS:

 \[
 \hat{\beta}_{(u_i,v_i)} = (X^T W(u_i,v_i) X)^{-1} X^T W(u_i,v_i) y
 \]
GWR as a special case of WLS

• GWR is a **weighted least-squares** regression (WLS);
 • WLS: weight some observations more than others in computing the regression coefficients
 • example: inverse weight by measurement variance, gives more weight to more reliable observations

• the weights are chosen to represent the neighbourhood;
• the weights change at each point
R packages

- **spgwr** Bivand [1]; one of the authors of the sp package
- **GWmodel** Gollini et al. [5]; Lu et al. [7]
GWR example – 4-state climate

- Four US States: VT, NY, NJ, PA
- 305 climate stations
- target variable: Growing Degree Days base-50°C (accumulated heat units for crop growth)
- predictors: North, East, elevation (square root)
Climate stations

Geographically
Weighted
Models

Spatially-
distributed
models

Kernel functions

The bandwidth
problem

Geographically-
weighted
models

Geographically-
weighted
regression

GWR calculation

GWR example 1 –
Northeast USA
climate

GWR example 2 –
Georgia (USA)
poverty

Extensions to
GWR

References
• GLS: ANN_GDD50 ~ sqrt(ELEVATION_) + N
• Fitted coefficients:
 (Intercept) 3136.37 (GDD50)
 sqrt(ELEVATION_) -3.00 (per \sqrt{m})
 N -1.91 (per km)
• spatial correlation of residuals effective range \approx 52 km
• adjusted $R^2 \approx 0.86$, RMSE 217 GDD_50
• Interpretation: strong **regional** effect of elevation and Northing on the annual heat units
 Easting not significant in the *global* (regional) model
Model was not equally good everywhere! And there are clear clusters of +/- residuals.
What to do about this model?

- The model is successful over the region . . .
 . . . but there are important local variations.
 What to do?

1. **Krige the residuals** and add to the GLS prediction (GLS-RK)
 - This accounts for a local process, **within** the regional process
 - e.g., presence of large water bodies

2. **GWR** to fit the model **locally**
 - Will **miss the regional variation**
 - Assumes the process is **local**
 - Maybe will better fit locally, and reveal the local importance of the three predictors
 - Does **not** account for spatial correlation of the residuals

- **Question:** which seems more appropriate in *this* case?
Use a Gaussian kernel; optimize by cross-validation

fixed 72.4 km

• at this radius a point receives $e^{1/2} = 0.6065$ weight.

• all points will be considered adaptive 3.35% of the stations in each window, i.e., about 10 stations for each regression
Geographically Weighted Models

Spatially-distributed models
Kernel functions
The bandwidth problem

Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty

Extensions to GWR

References

GWR model – R^2

Regional value shown with red vertical line
Most local models have a poorer fit
Because of the restricted range of predictors in a local window
GWR model – intercepts - feature-space distribution

Gauss fixed bandwidth

Gauss adaptive bandwidth

Density

Intercept

Density

Intercept

Geographically Weighted Models

Spatially-distributed models

Geographically-weighted models

Kernel functions

Geographically-weighted regression

The bandwidth problem

GWR calculation

GWR example 1 – Northeast USA climate

GWR Example 2 – Georgia (USA) poverty

Extensions to GWR

References
Not the average! A centering constant. Note low values in southcentral PA & the Taconics as well as northern NY/VT
GWR model – elevation - feature-space distribution

- **Gauss fixed bandwidth**
 - sqrt(elevation) coefficient
 - Frequency
 - Histogram from -50 to 40

- **Gauss adaptive bandwidth**
 - sqrt(elevation) coefficient
 - Frequency
 - Histogram from -50 to 40

- Geographically Weighted Models
- Spatially-distributed models
- Kernel functions
 - The bandwidth problem
- Geographically-weighted models
- Geographically-weighted regression
- GWR calculation
- GWR example 1 – Northeast USA climate
- GWR Example 2 – Georgia (USA) poverty
- Extensions to GWR
- References
Much of this pattern seems to be an artefact of GWR. Stronger vertical GDD gradient on Lake Erie plain than Lake Ontario plain?
Geographically Weighted Models

Spatially-distributed models
Kernel functions
The bandwidth problem
Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty
Extensions to GWR

GWR model – Northing - feature-space distribution

Gauss fixed bandwidth

Gauss adaptive bandwidth

Density

N coefficient

Density

N coefficient
Can be locally **positive**, disagrees with physical principles
Geographically Weighted Models

Spatially-distributed models
Kernel functions
The bandwidth problem
Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty
Extensions to GWR
References

GWR model – Easting - feature-space distribution

Gauss fixed bandwidth

Gauss adaptive bandwidth

Frequency
0 20 40 60 80 120
0 50 100 150
−4 −2 0 2 4 6 8
E coefficient

Frequency
0 50 100 150
−4 −2 0 2 4 6 8
E coefficient
Local effect in lower Hudson valley
Significance of coefficients

red: non-significant; dark green: negative; light green: positive

Intercepts are always highly significant, i.e., \(\neq 0 \); they centre the local regression

Interpretation: most local models are fit only with the local average (intercept)!
Global vs. GWR model

- **Global** model finds the average effect, over the *entire region*, of the predictors
 - the physically-plausible Northing and elevation are highly significant
 - these have a **wide range** of values over the region
 - good fit, over 85% of variance explained

- **GWR** model:
 - local models with an effective radius \(\approx 100 \text{ km} \)
 - wide range intercepts (averages) → local means
 - this takes out most of the effect of Northing
 - some effect of Northing, Easting near water bodies
 - elevation only important in windows with significant relief
 - usually much lower \(R^2 \), less of each window is explained by factors other than the local mean

- **In this case** the GWR model is *not* justified.
Example – Georgia (USA) poverty

- Georgia (USA) counties 1990 census; originally used in [3]
- Problem: how to explain the proportion of the population in poverty?
- Possible predictors: percent of population which is:
 1. rural
 2. has a bachelor’s degree or higher
 3. elderly
 4. foreign-born
 5. of African descent
- Practical application: if we know what is correlated with poverty (positive or negative), we can think of interventions
Geographically Weighted Models

Spatially-distributed models
Kernel functions
The bandwidth problem
Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty

Extensions to GWR

References

Global model – computation (OLS)

```r
## lm(formula = lm.formula, data = educ.spdf@data)
##
## Residuals:
##    Min     1Q Median     3Q    Max
## -7.8282 -2.8418 -0.2404  2.6184 17.4764
##
## Coefficients:
##                  Estimate Std. Error t value  Pr(>|t|)
## (Intercept)    7.506033   2.325226   3.228 0.001525 **
## PctRural       -0.007883   0.015780  -0.500 0.618121
## PctBach       -0.293767   0.083418  -3.522 0.000566 ***
## PctEld          0.709494   0.126583   5.605 9.46e-08 ***
## PctFB         0.148516   0.366098   0.406 0.685549
## PctBlack      0.259411   0.019638  13.210  < 2e-16 ***
##
## Multiple R-squared:  0.7078, Adjusted R-squared:  0.6982
```
about 70% of the variability in poverty is explained by these factors

- The strongest predictors are **education** (moderately negative), **elderly** (strongly positive), **racial group** (moderately positive).

- Proportion of **rural** residents has almost no effect
 - but is this because we are mixing urban (Atlanta, Savannah) and rural areas?

- Proportion of **foreign-born** residents has almost no effect
A null model can be used to find locally-weighted statistics of a target variable; e.g., % rural

- Global mean: 70.18
- Global s.d.: 27.1

Note: bounding box about 443 x 514 km
• GWR depends on the choice of kernel
 1. functional form
 2. bandwidth
 3. fixed vs. adaptive

• Next slides show the difference between kernels
Geographically Weighted Models

Spatially-distributed models
Kernel functions
The bandwidth problem
Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty
Extensions to GWR
References

GWR coefficients – education

Global coefficient -0.29

Note: education is associated with increased poverty in eastern central (Athens – University of Georgia)
Note the increased noise with the narrower kernel.
Geographically Weighted Models

Spatially-distributed models
Kernel functions
The bandwidth problem

Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty

Extensions to GWR

References

Artefacts – foreign-born
Substantial differences in **regression coefficients** across map

- In some cases even the **sign** changes – this may be a true effect
- Suggests **different causes/correlations** in different areas
Substantial differences with **choice of kernel**

- So what is a “local” effect?
- **Question**: is 50 km with Gaussian weights an appropriate fixed bandwidth?
- **Question**: are 22 counties with Gaussian weights an appropriate adaptive bandwidth?
1 Spatially-distributed models
 Kernel functions
 The bandwidth problem

2 Geographically-weighted models
 Geographically-weighted regression
 GWR calculation
 GWR example 1 – Northeast USA climate
 GWR Example 2 – Georgia (USA) poverty

3 Extensions to GWR
Mixed GWR

- GWR model with some coefficients **global**, i.e., *not* varying with the moving window
- Allows global/regional effects
 - Example: soil organic matter: affected by **regional** climate, but by **local** topographic effects [9]
- Mixed GWR tests which predictors are fixed and which can vary (and at which bandwidth) [8]
Multiscale Geographically Weighted Regression (MGWR)

- Developed by Fotheringham et al. [4]
- GWR with different bandwidths for different processes (represented by predictors)
- computes an optimal bandwidth vector in which each element indicates the spatial scale at which a particular process takes place
- can interpret the various bandwidths to infer the spatial processes
• As with OLS regression, but now Principal Components [6]
• Look for the multivariate correlations among predictors in a moving window
• Interpret the PC loadings, per window
• Can use the PC scores to create new, uncorrelated variables
Geography weighted models

Spatially-distributed models
Kernel functions
Geographically-weighted models
Geographically-weighted regression
GWR calculation
GWR example 1 – Northeast USA climate
GWR Example 2 – Georgia (USA) poverty
Extensions to GWR
References

Georgia poverty predictors, 50 km Gaussian bandwidth

PC1 much more explanatory in NW GA, i.e., predictors are much more correlated there
A useful tool to investigate spatial heterogeneity in regression models

- changing coefficients, changing variable importance, changing R^2
- the bandwidth reveals the spatial scale of the heterogeneity

This should be interpretable in terms of the physical/social setting
References

