Applied geostatistics
Exercise C: Spatio-temporal Geostatistics

Contents

D G Rossiter

May 18, 2020

1 Introduction 1
2 Space-time objects 2
2.1 Examining the structure of the dataset 5
2.2 Ensuring consistent time reference 7
2.3 Long-term time Series v v v v v v v i 9
2.4 Subsetting thedataset 10

3 Investigating local temporal structure 18
4 Investigating spatial structure 24
5 Constructing a grid for prediction 32
6 Spatial prediction 34
7 Investigating temporally-averaged spatial structure 35
8 Spatial prediction with a temporally-averaged spatial structure 37
9 Investigating spatio-temporal structure 39
10 Modelling spatio-temporal structure 43
10.1Metricmodels. e 43
10.2 Separablemodels 45
10.3 Sum-metricmodels, 48
10.4 Comparing variogram model fits 52

Version 1.5. Copyright © 2014, 2015, 2017, 2019-2020 D G Rossiter,
d.g.rossiter@cornell.edu. All rights reserved. Non-commercial re-
production and dissemination of the work as a whole (not parts) freely
permitted if this original copyright notice is included. Sale or placement
on a web site where payment must be made to access this document is

strictly prohibited. To adapt or translate please contact the author.

d.g.rossiter@cornell.edu

11 Spatio-temporal kriging 52

12 Empirical orthogonal functions 62
121 Computing EOF 68
12.2 Interpreting EOF: the screeplot. 69
12.3 Interpreting EOF: the biplot 70

13 Answers 75

A Creating space-time objects 81

B Creating space-time long format data frames from online data
sources 84

References 90

Index of R concepts 92

ii

1 Introduction

4 Z B2 0R], ST SR FH Z T AR,

AN, WFEZR, SFEFIOR,
— ZTHETEROT
“A footpath through the mountains if frequently used
becomes a road; if not used, it quickly becomes choked with
weeds. Now the weeds are choking your mind.”
- Mencius, Jin Xin part 2, 67

Spatio-temporal observations are those for which both a spatial loca-
tion (georeference) and a time of observation are recorded, as well as
attributes measured at the specified location and time.

Spatio-temporal datasets are found in many fields, for example clima-
tology (time-series of weather observations at several stations), politics
(voting records over time for a set of election districts), epidemiology
(disease occurrence over time in reporting districts or presented to hos-
pitals), wildlife ecology (locations of animals over time), soil science
(monitoring of changing soil properties in a region), limnology and hy-
drology (repeated measurements at monitoring locations).

This exercise introduces the geostatistical analysis of spatio-temporal
point observations at known locations and at known times, where both
the location and time are important in the analysis, within the R environ-
ment for statistical computing. The exercise is inspired by an article by
Pebesma [13], and uses his spacetime R package. This package extends
the sp package for spatial data handling and the xts package for time
series, thus combining spatial and temporal data structures.

At any one location, a time-series of observations can be analyzed using
time-series analysis [e.g., 15]; at any one time a set of point observations
can be analyzed using point geostatistics [e.g., 7, 16]; a set of area obser-
vations at one time can be analyzed with area-based spatial data analysis
[e.g., 1, Chapter 9]. But when observations are located in both space and
time, combined methods are needed. A good text introducing these con-
cepts is by Cressie and Wikle [3]. The technical report of Gneiting et al.
[6] is at a high mathematical level but has a worked example of wind ve-
locity data from Ireland. Kyriakidis and Journel [11] review the different
geostatistical models applied to space-time point data.

Pebesma has written a useful R “Task View” on spatio-temporal analysis'
which explains the alternative approaches than can be taken.

Note: The code in these exercises was tested with knitr package Ver-
sion: 1.28 [17] on R version 3.6.3 (2020-02-29), sp package Version: 1.4-1,
spacetime package Version: 1.2-3, gstat package Version: 2.0-5 and
xts package Version: 0.12-0 running on Mac OS X 10.7.5. So, the text and
graphical output you see here was automatically generated and incorpo-
rated into BIEX by running the code through R and its packages. Then

Lhttp://cran.r-project.org/web/views/SpatioTemporal.htm]l

http://cran.r-project.org/web/views/SpatioTemporal.html

the BIEX document was compiled into the PDF version you are now read-
ing. Your output may be slightly different on different versions and on
different platforms.

Most of this exercise (§2.1 - §11) uses an example space-time object,
already in proper format, to illustrate space-time data structures and
space-time geostatistical analysis. A final section (§12) presents em-
pirical orthogonal functions for analyzing space-time structure. An ap-
pendix (§A) shows an example of building space-time objects from data
frames, and how such data frames can be built from public databases

(§B).

2 Space-time objects

TASK 1 : Load the required packages. .

The spacetime package defines object classes inheriting from both sp
classes for the spatial representation and xts classes for the time repre-
sentation. We use the gstat package for point geostatistics. These are
all loaded with the require function.

Tibrary(sp)
Tibrary(xts)
Tibrary(spacetime)
Tibrary(gstat)

TASK 2 : Load an example dataset, list its objects and their classes. o

The air dataset provided with spacetime is a spatio-temporal dataset of
air quality in rural areas over much of Germany from the European Air
Quality Database (“AirBase”)?; see ?air for details. The data function
loads a built-in R dataset from a loaded package into the workspace.

data("air")
1sO

[1] "air" "dates" "DE" "DE_NUTS1" "stations"
class(air)

[1] "matrix"

str(air)

num [1:70, 1:4383] NA NA NA NA NA NA NA NA NA NA ...

- attr(x, "dimnames")=List of 2
..$: chr [1:70] "DESHOO1" "DENIO63" "DEUB038" "DEBEOS56" ...
..$: NULL

dim(air)["space"]

space
70

rownames (air)

Zhttps://acm.eionet.europa.eu/databases/airbase

https://acm.eionet.europa.eu/databases/airbase

[1] "DESHOO1" "DENIO63" "DEUBO38" "DEBE056" "DEBE062" "DEBE032"
[7] "DEHEO46" "DEUB0O7" "DENWO81" "DESH008" "DEUBOO3" "DESN049"
[13] "DESNO76" "DEUB002" "DETH026" "DENIO59" "DEUB039" "DEHE028"
[19] "DEMV0O17" "DEMVO04" "DEBBOS53" "DEUB034" "DENW063" "DETHO61"
[25] "DERP014" "DEHE048" "DEUB035" "DEUB032" "DEMVO12" "DEUBO31"
[31] "DEUB033" "DEBY047" "DENW065" "DEUB030" "DEHE034" "DESL008"
[37] "DEBW103" "DENIO58" "DEBB056" "DERPO17" "DETHO042" "DEBBO75"
[43] "DESNOS51" "DEUBO41" "DEUB017" "DEHE043" "DEUB004" "DEUB029"
[49] "DEUB040" "DESNO74" "DEBWO31" "DEBWO87" "DEMVOO1l" "DENW064"
[55] "DENwWO68" "DENIO19" "DEUB026" "DEUBOOS5" "DEBBO51" "DEHEOS51"
[61] "DEBW030" "DENIO60" "DERP015" "DEUBOO1" "DERP016" "DERP013"
[67] "DENIOS51" "DEUB028" "DESNO52" "DEUB042"

dimCair)["time"]

time
4383

str(dates)

Date[1:4383], format: "1998-01-01" "1998-01-02" "1998-01-03" "1998-01-04" ...

summary (stations)

Object of class SpatialPoints
Coordinates:
min max
coords.x1l 6.28107 14.78617
coords.x2 47.80847 54.92497
Is projected: FALSE
proj4string : [+proj=longlat +datum=WGS84]
Number of points: 70

summary (DE_NUTS1)

Object of class SpatialPolygonsDataFrame
Coordinates:
min max
rl 5.871619 15.03811
r2 47.269858 55.05653
Is projected: FALSE
proj4string : [+proj=longlat +datum=WGS84]
Data attributes:

ID_0 IS0 NAME_O ID_1
Min. :60 DEU:16 Germany:16 Min. :753.0
1st Qu.:60 1st Qu.:756.8
Median :60 Median :760.5
Mean 160 Mean :760.5
3rd Qu.:60 3rd Qu.:764.2
Max. 160 Max. :768.0
NAME_1 VARNAME_1 NL_NAME_1
Length:16 Bavaria 1 NA's:16
Class :character Hesse i1
Mode :character Lower Saxony 11
Mecklenburg-West Pomerania:l
North Rhine-Westphalia 11
(Other) 14
NA's 17
HASC_1 cc_1 TYPE_1 ENGTYPE_1 VALIDFR_1
DE.BE 1 NA's:16 Land: 16 State:16 Unknown:16
DE.BR : 1
DE.BW : 1
DE.BY : 1
DE.HB : 1
DE.HE : 1
(Other):10
VALIDTO_1 REMARKS_1 Shape_Leng Shape_Area

Present:16 NA's:16 Min. : 1.588 Min. :0.04279

1st Qu.:10.710 1st Qu.:1.63730
Median :15.235 Median :2.57381
Mean :15.809 Mean :2.86920
3rd Qu.:20.373 3rd Qu.:4.01785
Max. :32.255 Max. :8.65611

This dataset has several dataframes:

air : matrix of 70 rows, i.e., observation stations, with names given as
rownames (air), and 4383 columns, i.e., air quality measurements;

stations : coordinates of the stations; no other information; this is of class
SpatialPoints, i.e., there is no data.frame associated with the
points.

dates : the dates of observations, one for each column in the air matrix;
this is of class Date.

DE_NUTSI1 : polygons of German states (15t level divisions); this is of class
SpatialPolygonsDataFrame.

Both of the spatially-explicit dataset: stations (a SpatialPoints ob-
ject) and DE_NUTS1 (a SpatialPolygonsDataFrame object) have a co-
ordinate reference system (CRS) that is not explicit enough for recent
developments in the underlying PROJ .6 specification. These need to be
updated to include information on the ellipsoid used within the WGS84
datum. We do this with a call to the CRS function.

proj4string(stations)

[1] "+proj=Tlonglat +datum=WGS84"
proj4string(DE_NUTS1)

[1] "+proj=longlat +datum=WGS84"
proj4string(stations) <- CRS(proj4string(stations))

Warning in ‘proj4string<-‘(‘=tmp=‘, value = new("CRS", projargs = "+proj=longlat
+datum=WGS84 +el1ps=WCS84 +towgs84=0,0,0")): A new CRS was assigned to an object
with an existing CRS:

+proj=longlat +datum=WGS84

without reprojecting.

For reprojection, use function spTransform

proj4string(DE_NUTS1) <- CRS(proj4string(DE_NUTS1))

Warning in ‘proj4string<-‘(‘xtmp=‘, value = new("CRS", projargs = "+proj=longlat
+datum=WGS84 +el11ps=WGS84 +towgs84=0,0,0")): A new CRS was assigned to an object
with an existing CRS:

+proj=longlat +datum=WGS84

without reprojecting.
For reprojection, use function spTransform

proj4string(stations)
[1] "+proj=Tlonglat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
proj4string(DE_NUTS1)

[1] "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

Notice the warning “A new CRS was assigned to an object with an exist-
ing CRS”. But in this case, we have no more specific information on the
ellipsoid, so we assume the WGS84 ellipsoid along with the datum.

The first job is to combine the spatial and temporal information into one
data structure, a STFDF “space-time full-grid data frame” object, using
the STFDF constructor. of the spacetime package. This requires:

1. The spatial points, here from the stations object;
2. The times of observation, here from the dates object;

3. The variable measured at each point and each time, here the air
matrix, which we give a more meaningful name, PM10.

The number of spatial points and dates must match the number of rows
and columns, respectively, in the matrix,

We name the object rural; these are rural stations.
rural <- STFDF(stations, dates, data.frame(PM10 = as.vector(air)))

The class function shows the class of a object in the workspace.
class(DE_NUTS1)

[1] "SpatialPolygonsDataFrame"
attr(, "package™)
[1] "sp"

class(rural)
[1] "STFDF"

attr(, "package™)
[1] "spacetime"

Q1 : What are the classes of these two objects? Jump to Al e

In this exercise we will ignore the polygons and work only with point
data, i.e., the rural object.

2.1 Examining the structure of the dataset

TAsK 3 : Display the structure of the rural object. o

This object structure allows space-time analysis. It is an object in the S4
class definition system [2], with four first-level slots. The slot names can
be listed with the sTotNames function, and of course the structure with
the str function:

str(rural)

Formal class 'STFDF' [package "spacetime"] with 4 slots
..@ data :'data.frame': 306810 obs. of 1 variable:
. ..% PM10: num [1:306810] NA NA NA NA NA NA NA NA NA NA ...
..@ sp :Formal class 'SpatialPoints' [package "sp"] with 3 slots
. ..@ coords : num [1:70, 1:2] 9.59 9.69 9.79 13.65 13.3 ...
..- attr(x, "dimnames")=List of 2
..$: chr [1:70] "DESHOO1" "DENIO63" "DEUB038" "DEBEOS56" ...

e . ..% : chr [1:2] "coords.x1" "coords.x2"
..@ bbox : num [1:2, 1:2] 6.28 47.81 14.79 54.92
..—- attr(*, "dimnames")=List of 2
..$: chr [1:2] "coords.x1" "coords.x2"
.. ..$: chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 sTot
e ++ «u@ projargs: chr "+proj=Tlonglat +datum=WCS84 +ellps=WGS84 +towgs84=0,0,0"
..@ time :An 'xts' object on 1998-01-01/2009-12-31 containing:
Data: int [1:4383, 11 1234567 8 9 10 ...
- attr(*, "dimnames")=List of 2
..$: NULL
..$: chr "timeIndex"
Indexed by objects of class: [Date] TZ: UTC
xts Attributes:
NULL
..@ endTime: POSIXct[1:4383], format: "1998-01-02" ...

slotNames(rural)

[1] "data" "sp" "time" "endTime"
class(rural@data)

[1] "data.frame"

class(rural@sp)

[1] "SpatialPoints"
attr(, "package™)
[1] "sp"

class(rural@time)

[1] "xts" "zoo
class(rural@endTime)

[1] "POSIXct" "POSIXt"
The slots are:

@data: A dataframe with attribute values at each space-time point; here
there is only only attribute, PM10.

@sp : a SpatialPoints S4 class object defined in the sp package, with
the coordinates of each observation; it has second-level slots coords
containing the point codrdinates, bbox containing the extreme co-
ordinates of the point set, and proj4string giving the codrdinate
reference system;

@time : an xts “extensible time-series” S3 class object defined in the xts
“eXtensible Time Series” package;

@endTime : a vector whose elements are S3 class POSIXct objects, each speci-
fying the end point of a time interval. POSIXct is a standard class
for representing dates and times [14].

Note: The acronym POSIX stands for “Portable Operating System In-
terface”, a family of standards specified by the IEEE Computer Society to
ensure compatibility between operating systems. In this case the ct “con-
tinuous time” standard is a time format, the signed number of seconds
since the beginning of 1970 in the UTC time zone.

Q2 : What are the dimensions of the data frame, spatial points, and
time-series? What is their relation? (Hint: look at the dimensions of
these slots in the space-time object.) Jump to A2 e

Q3 : In what coérdinate reference system (CRS) is this dataset georefer-
enced? (Hint: look at the proj4string slot of the sp slot). Jump to A3

The description of this dataset® does not explain the meaning of the
single variable, PM10. The abbreviation “PM” stands for “particulate mat-
ter”, which are small particles of solid or liquid in the air. PM10 refers
to aerosol particles smaller than =~ 10um; these are particularly serious
for human health, because they are too small for the nose and throat to
filter, and so they may penetrate to the lungs and cause irritation; the
smallest portion of these, known as PM2.5, can enter the gas exchange
region of the lungs and even directly into the blood stream. PM10 is
generally measured in pug m-3 of air; the US EPA national air quality stan-
dard* for PM10 is 50 ug m-3 measured as an annual mean and 150 yg m-3
measured as a daily concentration; German environmental standards®
are stricter: 40 ug m3 measured as an annual mean and 50 pug m=3 PM10
measured as a daily concentration, allowed to be exceeded 35 times per
year.

2.2 Ensuring consistent time reference

There is a complication associated with slot endtime. It is an object of
class POSIXct [14]; elements of this vector are the signed number of sec-
onds since the beginning of 1970 in the UTC time zone. The Sys.time
function shows the current time in this format, adjusted to the time zone
set for the user’s system. However, this time zone may not agree with
that used in a data set. And, your operating system may not use an ex-
plicit time zone in the R settings, but somehow get it from the context.’

TASK 4 : Determine the time zone settings of your system. .

We first examine your system’s time zone using the Sys.time function
to show the time and Sys . timezone to show the time zone as a character
string, and the get.env “get environment variable” function to show the
time zone as set in the R environment’. We compare these to the time in

3help(air)

4http://www.epa.gov/airtrends/aqtrnd95/pm10.htmT

>http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed312_01.
htm

6 For more on R date and time classes, see [8].

7In some systems the time zone is inherited from the operating system and not ex-
plicitly set in R.

http://www.epa.gov/airtrends/aqtrnd95/pm10.html
http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed312_01.htm
http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed312_01.htm

UTC, by converting the time to an POSIXTt “long time” object with the
as.POSIX1t function.

Your results may well be different from what is shown here:
Sys.time()

[1] "2020-05-19 00:18:08 CST"

as.POSIX1t(Sys.time(), "UTC")

[1] "2020-05-18 16:18:08 UTC"

Sys.timezone()

[1] "America/New_York"

Sys.getenv(x="TZ", unset=NA)

[1] "Asia/Shanghai"

If the result of the last function is NA, the time zone information has

not been set in the R environment, but is inherited from the operating
system.

The rural object from the air dataset uses dates from midnight UTC
(“Universal Coordinated Time” in French), commonly referred to as GMT
(“Greenwich Mean Time”). So when we display dates of events in rural,
these are shown in the current time zone. To illustrate this, we show the
date as it appears in rural in the current time zone, and then in some
other time zones. Notice that with time zones to the west of Greenwich

(England), the date displayed changes to a day earlier.
rural@endTime[1]

[1] "1998-01-02 UTC"

as.POSIX1t(rural@endTime[1l], tz="CET")

[1] "1998-01-02 01:00:00 CET"
as.POSIX1t(rural@endTime[1l], tz="EST")

[1] "1998-01-01 19:00:00 EST"
as.POSIX1t(rural@endTime[1l], tz="America/Chicago™)
[1] "1998-01-01 18:00:00 CST"
as.POSIX1t(rural@endTime[1l], tz="Asia/Shanghai")
[1] "1998-01-02 08:00:00 CST"

Note: Quite confusingly, both Central Standard Time (USA) and Chinese
Standard Time (China) are referred to as CST.

Note: To find time zone names, see ?timezones; a long list of time zone
names can be displayed with the O1sonNames function.

The easiest way to ensure that dates are properly extracted is to set the
time zone for this R session to UTC.

TASK 5 : Set the time zone for this R session to UTC. .
The Sys.setenv function is used to set environment variables; the vari-
able TZ is a string naming the time zone.

Note: On Unix-like systems such as Mac OS/X and Linux, time zone
names and region/city combinations which represent them, are generally
found in the /usr/share/zoneinfo/ directory.

Sys.setenv(TZ="UTC")
Sys.timezone()

[1] "America/New_York"
Sys.getenv(x="TZ", unset=NA)
[1] "uTC"

Sys.time()

[1] "2020-05-18 16:18:08 UTC"
rural@endTime[1]

[1] "1998-01-02 UTC"

Now the time zone is set explicitly in the R environment, and the system
time zone agrees with the time zone used for the rural object.

2.3 Long-term time series

We can examine the time series for local structure (see §3), but first we
examine the global structure, i.e., to see if there is any long-term trend
or cycle.

TASK 6 : Find the longest time-series in the rural object. .

max.not.na <- 0; Tongest.station <- 1
for (station 1in 1l:dim(rural)["space"]) {
ts <- rural[station,][,"PM10"]
(ix <- sum(!is.na(ts)))
if (ix > max.not.na) { max.not.na <- ix; longest.station <- station }

3
Tongest.station.name <- row.names(rural@sp@coords)[longest.station]
print(paste0("Station ", longest.station, " (",

Tongest.station.name,
") has ", max.not.na, " PM10 readings"))

[1] "Station 19 (DEMV0O17) has 3940 PM10 readings"

Tong.ts <- rural[Tlongest.station,]
rm(max.not.na, longest.station, station)

TASK 7 : Display the time-series of PM10 at this station. .

spacetime::plot(long.ts$PM10, 1wd=0.5,
main=paste("PM10 at",Tongest.station.name))

PM10 at DEMVO017 1998-01-01/ 2009-12-31

250 250
200 200
150 150

100

r T T T T T T T T 1
Jan 01 Jan 01 Jan 01 Jan 01 Jan 01 Jan 01 Jan 01 Jan 01 Jan 01 Jan 01 Jan 01 Jan 01 Dec 31
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2009

Q4 : Describe this time series: (1) does there appear to be a long-term
trend? (2) does there appear to be a periodic structure, and if so, what is
the length of the period? (3) are there any obvious anomalies, and if so,
when? Jump to A4 e

These correspond to three processes:

1. A long-term process that operates over the time spanned by the
series;

2. A cyclic process that operates within each cycle;
3. Alocal process which causes variability between cycles.

Each of these processes is of interest and should be explained by the
analyst.

This time series does not seem to have any long-term trend, nor any
interesting cycle. The interpretation is that PM10 is a time-local phe-
nomenon; we will investiate this below in §3.

2.4 Subsetting the data set

To examine local structure, we subset this object to work with a smaller
dataset.

TASK 8 : Restrict the data to the time period from 2005 to 2010 inclu-
sive. .

The [] matrix selection operator has been adapted for STFDF objects: the
first dimension represents space, and the second time. We can see this

by the class of objects selected by just the first and second dimensions:
class(rural[l,])

[1] "xts" "zoo"
class(rural[,1])
[1] "SpatialPointsDataFrame"

attr(, "package™)
[1] "sp"

10

In the first case all times are selected for the first location, so the result
is a time series. In the second case all locations are selected for the first
time, so the result is a SpatialPointsDataFrame.

The second (time) dimension accepts any valid POSIX date as a character
string, so to select years we can specify the year range using the : : range
operator; since we specify only years, the POSIX specification selects all
dates in the named years.

rr <- rural[, "2005::2010"]
class(rr)

[1] "STFDF"

attr(, "package™)

[1] "spacetime"

Tength(rural@data$PM10)

[1] 306810

Tength(rr@data$PM10)

[1] 127820

The number of space-time observations has been reduced to about 2/5
of the original series.

Some of the stations have no observations at all during these years; there
is no need to include them in the further analysis.

TASK 9 : Remove stations that only have missing values in this period.

The code for this somewhat complicated.

To find missing values in a station’s record, we use the is.na function,
which returns the logical value TRUE if a value is missing and FALSE
otherwise, so if applied to a vector it returns a vector of TRUE and FALSE.

To determine if all the station’s records are missing, we use the al1 func-
tion on the logical vector, which returns TRUE only if all of its arguments
are TRUE.

The vector which we want to examine is the time-series portion of the
object, of class xts; this can be extracted with the as object coercion
method, which returns a matrix of observations: rows are times and
columns are locations.

The apply method is used to apply a function on either rows or columns
of a matrix or dataframe. We use it on the columns to process each
location’s time series; the construction all (is.na) () on this vector will
be TRUE if and only if there is no data for that station.

Once we have these row indices, the [] matrix selection operator can be
used to remove them; recall the first dimension of the STFDF object is

11

the spatial identifier. The minus sign - means to select all rows except
the named ones, here the vector of stations with only missing values. We
see the effect of the selection with the dim “dimensions” method, which
has a specialization for the STFDF class.

dim(rr)

space time variables
70 1826 1

(na.stations <- which(apply(as(rr, "xts"), 2, function(x) all(is.na(x)))))

DEBEO62 DEUBO0O7 DEUB0OO3 DEUB002 DEMV0O04 DEUB034 DEHE048 DEUBO032

5 8 11 14 20 22 26 28

DEMVO12 DEHEO34 DESLO08 DEUB041 DEUBO17 DEMVOO1l DEBBO51 DESNO52

29 35 36 44 45 53 59 69
DEUB042
70

r5tol0 <- rr[-na.stations,]
rm(na.stations)

dim(r5to10)
space time variables
53 1826 1
Q5 : How many stations were removed? Jump to A5 e
TASK 10 : Summarize this dataset. .

We use the summary method, which has a method for class STFDF:
summary (r5tol10)

Object of class STFDF
with Dimensions (s, t, attr): (53, 1826, 1)
[[Spatial:]]
Object of class SpatialPoints
Coordinates:
min max
coords.x1l 6.28107 14.78617
coords.x2 47.80847 54.92497
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +elTlps=WGS84 +towgs84=0,0,0]
Number of points: 53
[[Temporal:]]
Index timeIndex
Min. :2005-01-01 Min. 12558
1st Qu.:2006-04-02 1st Qu.:3014
Median :2007-07-02 Median :3470
Mean :2007-07-02 Mean 13470
3rd Qu.:2008-09-30 3rd Qu.:3927

Max . :2009-12-31 Max . 14383
[[Data attributes:]]

PM10
Min. : 0.560

1st Qu.: 9.275
Median : 13.852

Mean : 16.261
3rd Qu.: 20.333
Max. :269.079

NA's 121979

12

Q6 : What are the three dimensions of the object? What information
does each have? Jump to A6 e

TAsSK 11 : Examine the station codes. .

The station codes are stored as attributes of the coords slot of the sp
slot; these are extracted with the attributes function:
str(attributes(r5tol0@sp@coords))

List of 2
$ dim :int [1:2] 53 2
$ dimnames:List of 2
..$: chr [1:53] "DESHOO1" "DENIO63" "DEUBO38" "DEBEO56" ...
..$: chr [1:2] "coords.x1" "coords.x2"

(station.ids <- attributes(r5tol0@sp@coords)$dimnames[[1]])

[1] "DESHOO1" "DENIO63" "DEUB038" "DEBEO56" "DEBE032" "DEHE046"

[7] "DENWO81" "DESH008" "DESN049" "DESNO76" "DETH026" "DENIO59"
[13] "DEUBO39" "DEHE028" "DEMVO17" "DEBBO53" "DENW063" "DETH061"
[19] "DERP014" "DEUBO35" "DEUBO31" "DEUB033" "DEBY047" "DENW065"
[25] "DEUBO30" "DEBW103" "DENIOS58" "DEBBO56" "DERPO17" "DETHO042"
[31] "DEBBO75" "DESNO51" "DEHE043" "DEUB0OO4" "DEUB029" "DEUB040"
[37] "DESNO74" "DEBWO31" "DEBWO87" "DENWO64" "DENW0O68" "DENIO019"
[43] "DEUB026" "DEUBOOS5" "DEHEOS51" "DEBWO30" "DENIO60" "DERP015"
[49] "DEUBOO1" "DERPO16" "DERP013" "DENIO51" "DEUB028"

Note: The station names can also be extracted by the row.names func-
tion applied to the sp slot: row.names(r5tol0@sp).

The codes all begin with DE, the ISO 3166-1 2-letter code for “Deutsch-
land” (Germany). For simpler displays we remove the DE from all codes,
using the substr function to extract the 3rd through 7th characters of
each string:

(station.ids <- substr(station.ids, start=3, stop=7))

[1] "SHOO1" "NIO63" "UB038" "BEO56" "BE032" "HE046" "NWO81" "SH008"
[9] "SNO49" "SNO76" "TH026" "NIO59" "UB039" "HE028" "MV01l7" "BBO53"
[17] "NwO63" "THO61" "RPO14" "UB035" "UB031" "UBO33" "BY047" "NW065"
[25] "UBO30" "BW103"™ "NIO58" "BB0S56" "RP017" "THO042" "BB0O75" "SNO51"
[33] "HEO043"™ "UBO04" "UB029" "UB040" "SNO74" "BWO31" "BWO87" "NW064"
[41] "NwO68" "NIO19" "UB026" "UB0O5" "HEO51" "BWO30" "NIO60" "RPO15"
[49] "UBOO1" "RPO16" "RP0O13"™ "NIO51" "UB028"

TAsK 12 : Plot the locations of each station along with its label. .

The coordinates are in the sp “spatial” slot of the STFDF object; we ex-
tract them with the coordinates method. Finally, the $ operator is used
to select the proper attribute, and then the [[]] list extraction operator
is used to select the first list, which has the first attribute’s names.

Note: To display the map in approximately correct aspect, we compute
the aspect ratio from the cosine of the median N coérdinate, using the
cos function. Degrees of longitude shrink away from the equator.

13

(aspect.ratio <- cos(median(coordinates(r5tol0@sp)[,2])))
[1] 0.3943696

plot(coordinates(r5tol0@sp), pch=3, col="red",
cex=0.5, asp=1/aspect.ratio,
xlab="E", ylab="N")
grid()
text(coordinates(r5tol0@sp), Tlabels=station.ids, pos=4, cex=0.8)

B + UB001
+ UB028
~ + WE3808
n
+ nioss” N9 001 . UB026
% NI063
+ MV017
® + UB030
w7 + N0|860 + UB040
+ UB005
+ BBO56
+ BRERE
+ UB039
N
+ NWOBL + NWQRE avios1
+ NWOss + UB033
= + HEO%0 . THoa2 . snove
- + SNO51
w7 NWO065
"RPO16 . THOG1 + UB0B3JBO31
+ Nwos4 o 9 "+ SNO74
* 049
+ RPO15 + BYorN
3
HE043
+ RPOT4T e oog
+ RP018 BW103
+ RPO17
o |
N + BWO030
+ BW087
®
7 Btest
I I T T T T T
4 6 8 10 12 14 16 18
E
TAsSK 13 : Interpret the station codes. .

After removing DE, the first and second letters indicate a region, which
we can see with the substr function to extract the 15t and 2nd characters

of each string, and then find the unique codes with the unique function:
unique(substr(station.ids, start=1, stop=2))

[1] "SH" "NI" "UB" "BE" "HE" "NW" "SN" "TH" "MV" "BB" "RP" "BY" "BW"

Most of these codes appear to be ISO 3166-2:DE codes for German Lan-
der (states): SH is Schleswig-Holstein, NW is Nordrhein-Westfalen (North
Rhine - Westphalia, common abbreviation NRW), etc.; looking at the geo-

14

graphic distribution on the map confirms this. It appears that there are
no stations for this period in Bavaria (Bayern, BY) or Saxony-Anhalt (ST).
Code UB is spread around the country; this code likely stands for “librig”
(other), perhaps for stations not run by the states.

We check this by overlaying the boundary of Germany.

TASK 14 : Make a bounding polygon of Germany and display it, along
with each station location and its two-letter state codes. .

Country boundaries are provided by the worldH1ires dataset provided
with the mapdata package, which was created from what its authors call
a “cleaned-up” version of the CIA World Data Bank II data of 2003%. We
extract the boundary with the map function, and then converted them to
a SpatialPolygons object with the map2SpatialPolygons function of the
maptools package. The fi11 argument to the map function converts the
boundary coérdinates into a polygon by joining the last and first points.

The boundary is first displayed with pTlot, the points are added with
points, and text is added with text. The two-letter codes are the 31d
and 4th in the station identification, and are extracted with the substr
“substring” function.

Note: There is no need to supply an aspect ratio, since the boundary is a
spatial object with a defined coodrdinate reference system.

Tibrary(mapdata)
tmp <- map('worldHires', 'Germany', fi11=TRUE, plot=FALSE)
Tibrary(maptools)
de.boundary <-
map2SpatialPolygons (tmp, IDs=tmp$names,
proj4string=CRS(proj4string(rr@sp)))
summary (de.boundary)

Object of class SpatialPolygons
Coordinates:
min max
X 5.864166 15.04003
y 47.274750 55.05666
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0]

plot(de.boundary, axes=T)

points(coordinates(r5tol0@sp), pch=3, cex=0.5, col="red")

gridQ

text(coordinates(r5tol0@sp), labels=substr(station.ids,1,2), pos=4, cex=0.5)

8http://www.evl.uic.edu/pape/data/WDB/

15

http://www.evl.uic.edu/pape/data/WDB/

50°N 52°N 54°N

48°N

I I I I I I I I
4°E 6°E 8°E 10°E 12°E 14°E 16°E 18°E

The “lbrig” (other) stations may be those not controlled by one of the
states.

We can also display these in Google Earth by writing the station locations
as a KML “place-mark” file, using the writeOGR function. However, we
first need to convert just the spatial information in this STFDF object to
a SpatialPointsDataFrame, with a data slot, here the station name.

Tibrary(rgdal)
r5tol0sp <- SpatialPointsDataFrame(r5tol0@sp,data=data.frame(id=station.ids))
str(r5tolOsp)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 53 obs. of 1 variable:

..$ id: Factor w/ 53 Tlevels "BB053","BB056",..: 32 21 51 5 4 13 26 33 34 37 ...

..@ coords.nrs : num(0)
..@ coords : num [1:53, 1:2] 9.59 9.69 9.79 13.65 13.23 ...
..- attr(x, "dimnames")=List of 2
..$: chr [1:53] "DESHOO1" "DENIO63"™ "DEUB038" "DEBE056" ...
e «. ..$: chr [1:2] "coords.x1" "coords.x2"
..@ bbox :num [1:2, 1:2] 6.28 47.81 14.79 54.92
..- attr(x, "dimnames")=List of 2
..$: chr [1:2] "coords.x1" "coords.x2"
e v. .. chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
..@ projargs: chr "+proj=longlat +datum=WGS84 +ell1ps=WGS84 +towgs84=0,0,0"

The codrdinate reference system (slot proj4string) is already in the

16

system used by Google Earth, so there is no need for codrdinate or datum
transformation.
writeOGR(r5tol0sp, "PM1Opoints.kml", "id", driver="KML", overwrite_layer=TRUE)

Figure 1a shows the place-marks of the stations in North Rhine - West-
phalia state; Figure 1b shows the location of station DENW063 near Soest
(NRW); note the precision of the georeference.

Munster

'/‘:‘ g T
\vf\\(r/ﬁlb(t)rtn\}und
b

% North Rhine-Westphalia

Limburg

; Y
' sy
e
Disseldorf O sWuppertal i

A ‘/\L

D
\7;_,_ : _/‘—"‘L_f’ﬁj \L(_l
i e

Lﬂk‘mrkf\fkj
Q : -+ Koln

-y

! Qachen

o ¥

© 2009 GeoBasis-DE/BKG

Figure 1: (a) PM10 monitoring stations in North Rhine-Westphalia; (b)
closeup of station DENWO063

17

3 Investigating local temporal structure

A time-series analysis is possible at each station.

TASK 15 : Extract the stations in Nordrhein-Westfalen. .

We identify the states in NRW with the == logical operator on the sub-
string of the 1st and 2nd characters of the string, extracted with the
substr function. We then extract just the station number, since we
know they are all in NRW, and use the attributes function to store
these in the dimnames field of the object’s codrdinates; this simplifies
later displays.

(ix <- (substr(station.ids, start=1, stop=2)=="NW"))

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

[12] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

[23] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[34] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

dim(r5tol0)
space time variables
53 1826 1
r5tolOnrw <- r5tolO[ix,]
dim(r5tolOnrw)
space time variables
5 1826 1

(station.ids.nrw <- substr(station.ids[ix], 3, 5))
[1] "081" "063" "065" "064" "068"

attributes(r5tolOnrw@sp@coords)$dimnames[[1]] <- station.ids.nrw

There are only five stations in NRW.

This is the first station in the list of five; it is located on the northeast
edge of Borken in the northwestern part of the State, near the border
with the Netherlands®.

TASK 16 : Display the temporal autocorrelation of station DENWO81. e

The temporal autocorrelation coefficient shows how much an observa-
tion before or after a given time is correlated, over the whole time series.
The term “auto” means that the same variable is being correlated with it-
self, in this case by considering the same variable at different observation
times. If the time series is 2nd order stationary (i.e., has same expected
value and variance over the whole series), at lag k the autocorrelation is:

pr = E[(Zt—ﬂz)_(zzt+k—l«l)])

9To see this, enter the coérdinates into Google Earth or another mapping program.

18

which can be estimated as 7y:

Yk = Ck/Co ()
| N-k
ck = 3 2 (2= (znk-2,k=0,1,2...K (3)
t=1
1 q
var[ry] = N 1+221’3 k> q 4)
v=1

The acf “time series autocorrelation” function computes and displays
the autocorrelation. However, it can not process missing values, so we
first remove them with the na.omit function on the time series vector.

Note: A complication is that when only one record is selected from an
STFDF object, it is converted to to an xts “extensible time-series” object,
with a field timeIndex which shows the time sequence. So to do a uni-
variate autocorrelation we need to explicitly convert this to a time series
with the as.ts “as a time series” function, and limit it to just the target
variable PM10.

class(tmp <- na.omit(r5tolOnrw[1,]))

[1] "xts" "zoo
str(tmp)

An 'xts' object on 2005-01-01/2009-12-31 containing:
Data: num [1:1599, 1:2] 32 14.7 22.1 17 22.8 ...
- attr(x, "dimnames")=List of 2
..$: NULL
..$: chr [1:2] "PM10" "timeIndex"
Indexed by objects of class: [Date] TZ: UTC
xts Attributes:
List of 1
$ na.action: 'omit' int [1:227] 163 237 238 278 494 495 528 569 570 571 ...

..— attr(x, "index")= num [1:227] 1.12e+09 1.12e+09 1.13e+09 1.13e+09 1.15e+09 ...

r5tolOnrw.l.ts <- as.ts(na.omit(r5tolOnrw[1,]))[,"PM10"]
acf(r5tolOnrw.1.ts,

main=paste("Autocorrelation, station", station.ids.nrw[1]))
acf(r5tolOnrw.1.ts, plot=FALSE)

Autocorrelations of series 'r5tolOnrw.l.ts', by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.646 0.392 0.244 0.172 0.159 0.137 0.128 0.105 0.087 0.084
11 12 13 14 15 16 17 18 19 20 21
0.062 0.055 0.052 0.044 0.061 0.065 0.070 0.052 0.054 0.082 0.081
22 23 24 25 26 27 28 29 30 31 32
0.067 0.071 0.058 0.039 0.038 0.024 0.023 0.023 0.037 0.046 0.067

19

Autocorrelation, station 081

1.0

ACF
0.6 0.8

0.4

0.2
|

0.0
I E—
—
—
-

_
—
—
—
—
=
—
—
-
—

Q7 : Describe the temporal autocorrelation of PM10 at this station.
Jump to A7 e

Another way to look at autocorrelation is with the partial autocorrelation
function. This measures the autocorrelation at each lag after accounting
for previous lags. For example, if all autocorrelation can be explained
at lag 1, then there is no partial autocorrelation at lags 2, 3, ...; that is,
the apparent autocorrelation at these lags can be explained by repeated
lag-1 correlations.

This assumes the process is autoregressive (AR) and can be modelled
as:

Zr=Pr1Zr 1+ PrZr o+ -+ PpZrp +ar (5)
where ¢; are the autocorrelation parameters (strength of dependence at
each lag), and a; is the white noise, sometimes called “shock” at time t.
The simplest AR process is AR(1): Z; = ¢p1Z2¢-1 + ay, i.e., the value at time
t is only dependent on the immediately-preceding value at time (¢ — 1),
and some random shock a;.

To compute the partial autocorrelation coefficient p; , define ¢y ; as the
coefficient j of an autoregressive process of order k, then:

pj=briPj-1+ -+ Prkpj-k, J=1,2,...k (6)

To compute the p solve the following linear system:

Py = pi (7)
1 P1 p2 Tt Pk-1l
p, = | 1 P1 Pk-2)
Pk-1 Pk-2 Pk-3 -+ 1

20

TASK 17 : Display the partial temporal autocorrelation of station DENWO81.

The pacf “time series partial autocorrelation” function computes and
displays the partial autocorrelation.

pacf(r5tolOnrw.1.ts,
main=paste("Partial autocorrelation, station", station.ids.nrw[1]))
pacf(r5tolOnrw.1.ts, plot=FALSE)

Partial autocorrelations of series 'r5tolOnrw.l.ts', by lag

1 2 3 4 5 6 7 8 9 10
0.646 -0.042 0.011 0.035 0.064 0.003 0.036 -0.004 0.013 0.023
11 12 13 14 15 16 17 18 19 20
-0.018 0.015 0.009 -0.003 0.041 0.008 0.018 -0.019 0.032 0.052
21 22 23 24 25 26 27 28 29 30
-0.007 -0.008 0.035 -0.013 -0.017 0.018 -0.023 0.011 0.001 0.024
31 32
0.011 0.041

Partial autocorrelation, station 081

Partial ACF
0.2 0.3 0.4 0.5 0.6

0.1

0.0
—

Q8 : Describe the partial temporal autocorrelation of PM10 at this sta-
tion. What can you infer about time behaviour of the process controlling
PM10 concentration? Jump to A8 e

In the above steps we only considered one station. We can also compute
temporal cross-correlations between stations; this shows how related
they are, and may suggest common causes. This does not require any
knowledge of the stations’ codrdinates, although we do have these.

TAsK 18 : Compute and plot the direct and cross-correlations between
the stations in NRW. .

21

Cross-correlation may be computed with the ccf function; but a simpler
way is to compute both auto- and cross correlations by passing a multi-
variate time series object to the acf method. Class xts is the “extensible
time series” class, used by the spacetime package to store time series.
Since there is one time series per station, this is a multivariate series.
The as method coerces the object given in its first argument, here of
class STFDF, to the class named in its second argument, here xts.

0.0 0.6 0.0 0.6 0.0 0.6

0.0 0.6

0.0 0.6

acf(na.omit(as(r5tolOnrw, "xts")), xlab="", ylab="")
081 081 & 063 081 & 065 081 & 064 081 & 068
n © 7] © 7] © 7] © 7]
= T = -
_:ILIE'H'J:“:-I":':'E O-__l_'IE'H'i'::':-:: Q__h_'lb-:“z'::::: Q__“_'IE":::.:.::: C’-__I_'lH'HE'::':::
T T T 1 © T TT © T © T T T © T T
05 15 05 15 05 15 05 15 0 5 15
063 & 081 063 063 & 065 063 & 064 063 & 068
] © 7] © 7] © 7] © 7]
. { d:‘ o':j o':| o':J
Thsneunmatlll Q_:I_JL_“H”:“:':":':. Q__I_JE“_“i":':'E':-t Q__I_JE'::'::::: S Mllisnosing
T T 1 1 © 7T T 11 © T T T © T © T T
-20 -10 0 05 15 05 15 05 15 0 5 15
065 & 081 065 & 063 065 065 & 064 065 & 068
] © 7] © 7] © 7] © 7]
=TT
:'::::-'::'"J:. o-_:1**.“:-1”.*":"1”:. o-_:I_JE“_*'J:":":'E':. Q__I_JH':':'::::. Q__l_'l':-':f:':::::
| L L e L L e I I A L © T T T T © T T T T
-20 -10 0 -20 -10 0 0 5 15 0 5 15 05 15
064 & 081 064 & 063 064 & 065 064 064 & 068
n © 7] © 7] © 7] © 7]
= l 3 { 3 { o':| o':J
::"'::::':'l_'l. Q_:'_*'i“:':"_*":"i@. O-_:'_*'i“_*':“_*":"ilﬂ. Q_:I_JE':“:-::':':. Q__h_"'_'-:f_':::::
T e e L O L L e L I e L e I I L L A I B
-20 -10 0 -20 -10 0 -20 -10 0 0 5 15 0 5 15
068 & 081 068 & 063 068 & 065 068 & 064 068
n © 7] © 7] © 7] © 7]
= = -
:'r''-:':"_*":"ﬂll. Q_::"'_":'I”L”t”lllj_'. C’-_::E'::"_*":"i|J:|. C’-_""::':":”J:|. O-_:I_JH”_'“'_“EIZZC
I e L L L
-20 -10 0 -20 -10 0 -20 -10 0 -20 -10 0 05 15

The lag-0 cross-correlations do not have to equal 1 (perfect correlation),

and rarely do.

22

Q9 : Which stations appear to be most and least correlated in time?
Jump to A9 e

Q10 : Is the temporal cross-correlation symmetric (same forward and
backward?) Jump to AI10 e

This shows that cross-correlations can be asymmetric. If we denote the
correlation between station A at time t by Z(s4,t) and station B at time
(t + h), i.e., after a lag of h units, which may be positive or negative, by
Z(sg,t +h) as pag(h), then:

pap(h) = ppa(—h) # pap(—h) = pga(h) 9)

We can try to explain the difference in cross-correlation by the spatial
distance - is it so that closer stations are more cross-correlated?

TASK 19 : Display the locations of the NRW stations. .

plot(de.boundary, axes=T, main="DE NRW stations")
points(coordinates(r5tolOnrw@sp), pch=20, col="blue™)

gridQ)

text(coordinates(r5tolOnrw@sp), labels=station.ids.nrw, pos=4)

DE NRW stations

50°N 52°N 54°N

48°N

I I I I I I I I
4°E 6°E 8°E 10°E 12°E 14°E 16°E 18°E

TAsK 20 : Compute the distances between the NRW stations. .

23

The spDists function computes distances between locations given by
sp class coordinates:
print(spDists(r5tolOnrw@sp, longlat=TRUE), digits=3)
[,11 [,21 [,31 [,4]1 I[,5]
[1,] 0.0 143.1 138.4 141 93.8
[2,] 143.1 0.0 113.3 228 62.6
[3,] 138.4 113.3 0.0 138 71.3

[4,]1 140.7 227.8 138.2 0 165.9
[5,] 93.8 62.6 71.3 166 0.0

row.names (r5tol0Onrw@sp)

[1] "081" "063" "065" "064" "068"

Note that even though the codrdinates are given in longitude and lati-
tude, the distances are given in metric coordinates, namely km, because
of the optional TRUE value of the Tonglat argument. The spDists func-
tion examines the proj4string slot of the sp slot of the STFDF object,
and then computes distances on the ellipsoid.

Q11 : Which stations are closest? furthest? Does this agree with the
cross-correlation plots? Jump to A1l e

We thus have evidence of spatio-temporal dependence: the temporal
correlation may be affected by spatial dependence.

4 Investigating spatial structure

At any one observation interval (here, day) we can investigate the spatial
structure of the measured variable, with the standard tools of geostatis-
tics.

TASK 21 : Extract the PM10 observations for all the stations on the
day with maximum pollution anywhere in Germany during the five-year
period. o

First the index in the dataset of the maximum PM10, and its value:
(ix <- which.max(r5tol10$PM10))

[1] 81688

(pm.max <- r5tol0$PM10[ix])

[1] 269.079

To determine the date of this observation, we first find the station, and
then search in the station record for the date. Each station has an equal-

length time-series, so using the integer division operator %% of the index
on the dimension of the data vector gives the station number.

The index function of the zoo “irregular time series” package (loaded
by the xts “extensible time series” package, which in turn is loaded by

24

spacetime package) extracts the date(s) from a time series, here the
single date.

dim(r5tol0)
space time variables
53 1826 1

(station.id <- ix%%dim(r5tol0)[1])

space
15

(station.name <- attributes(r5tol0@sp@coords)$dimnames[[1]][station.id])
[1] "DEMVO17"
coordinates(r5tol0) [station.id,]

coords.x1l coords.x2
11.36297 53.30235

station.xts <- r5tolO[station.id,]
str(station.xts)

An 'xts' object on 2005-01-01/2009-12-31 containing:

Data: num [1:1826, 1:2] 32.62 13 8.17 15.75 17.25 ...
- attr(x, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "PM10" "timeIndex"

Indexed by objects of class: [Date] TZ: UTC

xts Attributes:
NULL

summary (station.xts)

Index PM10 timeIndex
Min. :2005-01-01 Min. : 3.898 Min. 12558
1st Qu.:2006-04-02 1st Qu.: 11.268 1st Qu.:3014
Median :2007-07-02 Median : 15.250 Median :3470

Mean :2007-07-02 Mean : 18.090 Mean 13470

3rd Qu.:2008-09-30 3rd Qu.: 21.312 3rd Qu.:3927

Max. :2009-12-31 Max. :1269.079 Max. 14383
NA's 111

The summary shows that the maximum PM10 value is very high; is this
consistent with other observations?

To check, we make a histogram with the hist function, with a rug plot
of actual observations, of this time series of PM10 values:

hist(station.xts$PM10, breaks=20)
rug(station.xts$PM10)

25

Histogram of station.xts$PM10

800 1000
| |

600

Frequency

I_I—IIIIIIJI.IJLH,LIHUHHHIHH [T 1
T T T 1

0 50 100 150 200 250

station.xts$PM10

Q12 : Describe the feature-space distribution of PM10 at this station
over the five years. How unusual is the reported maximum? Jump to
AlZ e

Extract the record of the maximum, this becomes a one-item extended
time series:
(date.xts <- station.xts[which.max(station.xts$PM10)])

PM10 timeIndex
2009-03-22 269.079 4099

class(date.xts)

"

[1] "xts" "zoo

Knowing the record, find its index into the xts data structure; this is of
class Date, a basic R class.
(date.ix <- index(date.xts))

[1] "2009-03-22"
class(date.ix)

[1] "Date"

Q13 : What was the maximum PM10 in the five-year time series? At
which station and on which date was it observed? Jump to A13 e

We can also visualize the time series for that station, to see the context
of the maximum:

plot(station.xts$PM10, type='h', main="Station DEMV01l7",
ylab="PM10 concentration")
plot(station.xts[seq(date.ix-20, date.ix+20, by=1)]$PM10,
type="b", main="Station DEMV017",
ylab="PM10 concentration")

26

Station DEMV017 2005-01-01/2009-12-31

250 250
200 200
150 150
100 100
50 50
T T T T T T T T T T 1
Jan 01 Jul 01 Jan 01 Jul 01 Jan 01 Jul 01 Jan 01 Jul01 Jan 01 Jul 01 Dec 31
2005 2005 2006 2006 2007 2007 2008 2008 2009 2009 2009
Station DEMV017 2009-03-02 / 2009-04-11
250 250
200 200
150 150
100 100
°
50 o 50
L3N / N\
7 e) LR PR
°N Lo So oo/ ° ° ° N o
- So ..0-0 o’ °-e To 0.,..9-0-0-0" °-0 a/ e-o
T T T T T T 1
Mar 02 Mar 09 Mar 16 Mar 23 Mar 30 Apr 06 Apr 11
2009 2009 2009 2009 2009 2009 2009
Q14 : In context, does this value seem likely? Jump to Al4 e

We will see if this value is spatially-consistent with its neighbours.

TASK 22 : Select the records for all stations for the chosen date. .

The [] matrix selection operator can be used; recall that the second ma-
trix coordinate of an ST object is time. However, the index is of class
Date, whereas the time index into the STFDF object r5tol0 must be a
subscript that can be interpreted as an index in an xts object. The sim-
plest way to do this is convert the date to a character string with the as

method, and then use this as the subscript.
class(date.ix)

[1] "Date"

date.ix <- as.POSIXct(date.ix)
class(date.ix)

[1] "POSIXct" "POSIXt"

date.ix <- as(date.ix,'"character™)
class(date.ix)

27

[1] "character"

dim(r5tol0)
space time variables
53 1826 1

r.date <- r5tol0[,date.ix]
dim(r.date)

[1] 53 1
summary(r.date)

Object of class SpatialPointsDataFrame
Coordinates:
min max

coords.x1l 6.28107 14.78617

coords.x2 47.80847 54.92497

Is projected: FALSE

proj4string :

[+proj=longlat +datum=WGS84 +el1ps=WGS84 +towgs84=0,0,0]
Number of points: 53

Data attributes:

PM10

Min. : 13.71

1st Qu.: 20.07

Median : 26.45

Mean : 31.94
3rd Qu.: 31.03
Max . :1269.08
NA's 115

Since there is only one date, this is now a SpatialPointsDataFrame,
which we can analyze as usual with gstat.

TAsk 23 : Make a post-plot of the PM10 concentrations on this date,
also with the actual values. o

The plot method on the codrdinates, extracted with the coordinates
function, plots the locations; the text function adds the labels.

plot(coordinates(r.date),
cex=4+*r.date$PM10/max(na.omit(r.date$PM10)),
col="red", asp=1/aspect.ratio, xlab="Longitude", ylab="Latitude",
main=paste("PM10 on",date.ix))

text(coordinates(r.date), labels=round(r.date$PM10,1), pos=2)

gridQ

28

PM10 on 2009-03-22

B8 26.6
16.5
% .
073,219
20 -
269'@3 8
™ 0
- 15.7 -
© 205
28
o
n
s 192137
2 3.2 204 .
-
[35.5 -
195 . 329 §§-31§'6 .
262. e 3'|.6.2-
36.6 - 283"
8 -
35.
289377,
312 .27 -
02
o _|
= 30.4
29 .
o _|
< £é3§ -
| I I I I I I I
4 6 8 10 12 14 16 18
Longitude

Q15 : How consistent is the very high measurement at station DEMV017
with its neighbours? Jump to A15 e

We have no definite grounds to reject this value; however we can see
that it is not at all consistent with surrounding values, and would seri-
ously distort variogram analysis. One way to deal with this is to remove
it from this day’s spatial dataset, while noting the anomaly and explain-
ing it from an unusual cause (or recording error - this requires further
investigation).

TASK 24 : Remove this measurement from the single day dataset, and
then display a post-plot of the reduced dataset. o

summary (r.date@data)

PM10
Min. : 13.71
1st Qu.: 20.07
Median : 26.45

Mean : 31.94
3rd Qu.: 31.03
Max . :269.08
NA's 115

r.date <- r.date[-station.id,]
summary (r.date@data)

PM10

29

Min. :13.71
1st Qu.:19.97
Median :26.29
Mean :25.53

3rd Qu.:30.39
Max. :40.05
NA's 115

plot(coordinates(r.date),
cex=3+*r.date$PM10/max(na.omit(r.date$PM10)),
col="red", asp=1/aspect.ratio, xlab="Longitude", ylab="Latitude",
main=paste("PM10 on",date.ix))

text(coordinates(r.date), labels=round(r.date$PM10,1), pos=2)

grid()

PM10 on 2009-03-22

B 26.60
1650
% _
27302190
200
13.8
(32}
- 15.7
© 2056 °
w8 °
o _
n
3 19.213.7 o
2 20 2040
R
B 35.50)
1950 32.90 §§%186 °
2638 4620
36.60) 28.30
8 -
290 59,
31,2027.90
£330
o _|
= 30.40
290
o _|
~ Pic g
I I I I I I I [
4 6 8 10 12 14 16 18
Longitude

Q16 : Does there appear to be spatial correlation of PM10 on the se-
lected date? Jump to A16

TAsK 25 : Compute, display, and model the omnidirectional variogram
of PM10 on this date. o

Note: Although there may be anisotropy because of, e.g., wind direction,
the number of observations is too small to analyze it.

We use the variogram method of the gstat package. This can not deal
with missing values, so we first remove them.

30

str(r.date)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 52 obs. of 1 variable:
..$ PM10: num [1:52] NA 20 NA 22.6 22.4 ...
..@ coords.nrs : num(0)
..@ coords : hum [1:52, 1:2] 9.59 9.69 9.79 13.65 13.23 ...
..- attr(x, "dimnames")=List of 2
..$: chr [1:52] "DESHOO1" "DENIO63" "DEUB038" "DEBEO56" ...
we . ..$: chr [1:2] "coords.x1" "coords.x2"
..@ bbox : num [1:2, 1:2] 6.28 47.81 14.79 54.92
..- attr(x, "dimnames")=List of 2
..$: chr [1:2] "coords.x1" "coords.x2"
e v. 2.8 chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 sTot
. ..@ projargs: chr "+proj=longlat +datum=WGS84 +ellps=WCS84 +towgs84=0,0,0"

sum(is.na(r.date$PM10))

[1] 15

sum(!is.na(r.date$PM10))

[1] 37

vo <- variogram(PM10 ~ 1, r.date[!is.na(r.date$PM10),])

plot(vo, plot.numbers=T, main=paste("PM10 on",date.ix))

(vom <- fit.variogram(vo, model=vgm(50, "Exp", 300/3, 0)))
mode’l psill range

1 Nug 0.00000 0.0000

2 Exp 56.57785 144.6796

plot(vo, plot.numbers=T, model=vom, main=paste("PM10 on",date.ix))

PM10 on 2009-03-22 PM10 on 2009-03-22
I I
28 28
60 - 60 -
240 °2i 240 °2i
50 | - 50 -
28 ©28
40 <40
9 233 °9 N

o 404 - o 40 -
8 8
e e
8 8
7w 7w
E 30 025, - E 30 5. L
5 215 °25:26 5 5 °25:26
& &

20 | - 20 o -

018 °18
10 - 10 -
011 011
2 2
T T T T T T T T T T T T
50 100 150 200 250 300 50 100 150 200 250 300
distance distance

Q17 : Describe the variogram. Does it provide evidence of spatial corre-
lation of PM10 on the selected date? Jump to A17

The model is fairly good despite the small number of points. We can
interpolate over the study area at this one date; this is a step in a simple
space-time analysis:

1. Compute a variogram on each date;

31

2. Interpolate (e.g., by kriging) on that date over a grid covering the
study area;

3. View this time-series of graphs in sequence, e.g., by animation.

This does not take any advantage of the extra information that might
be provided by temporally-correlated measurements. Also, it relies on
variograms computed from a small set of points, which are expected to
fluctuate day-to-day. Another approach is to compute a lumped (average)
variogram model; see below §7.

5 Constructing a grid for prediction

Once we have a variogram model, we can use it to “predict”, although
since the observations are in the past, this is more properly called “inter-
polation” to unobserved locations. Interpolation is often over a regular
grid, to produce a map.

TASK 26 : Create a space-time grid covering Germany with a resolution
of 0.25°x 0.25° of longitude and latitude. o

We do this by first making a square grid covering the bounding box for
Germany. The seq function makes regular sequences of numbers, here
coordinates; the rep function repeats them as needed by the SpatialPoints
constructor. We then restrict the grid to Germany by overlaying the

bounding polygon imported and formatted in §2, using the over method.
bbox (de.boundary)

min max
X 5.864166 15.04003
y 47.274750 55.05666

x1 <- seq(from=5.75,to0=15.25,by=0.25)
x2 <- seq(from=47.25,t0=55.25,by=0.25)
de.bbox.grid <- SpatialPoints(cbind(rep(xl,length(x2)),
rep(x2,each=1ength(x1))),
proj4string=CRS(proj4string(r5tol0@sp)))
gridded(de.bbox.grid) <- TRUE
summary (de.bbox.grid)

Object of class SpatialPixels
Coordinates:
min max

coords.x1l 5.625 15.375
coords.x2 47.125 55.375
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +el1ps=WGS84 +towgs84=0,0,0]
Number of points: 1287
Grid attributes:

cellcentre.offset cellsize cells.dim
coords.x1 5.75 0.25 39
coords.x2 47 .25 0.25 33

de.grid <- de.bbox.grid[!is.na(over(de.bbox.grid, de.boundary)),]
summary (de.grid)

Object of class SpatialPixels
Coordinates:

32

min max

coords.x1 5.625 15.375
coords.x2 47.125 55.375
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0]
Number of points: 729
Grid attributes:

cellcentre.offset cellsize cells.dim
coords.x1l 5.75 0.25 39
coords.x2 47.25 0.25 33

plot(de.boundary, axes=T)
points(coordinates(de.bbox.grid), pch=3)
points(coordinates(de.grid), pch=1, col="red")
points(coordinates(r5tol0@sp), pch=21, bg="blue")
grid(lty=1, col="blue")

i
P
z G 444413
“ & FT T »
% T894 -
[Te) -3 -q-3-9-4-1-1 -1-1-1
]
.l. CAAAAAMAAAAAAA A l."l.l.
I hiayn
£ 3
N Lober}
(0 4
BEIARAAAAAAAAAAAAAAAAAAA CAAAAAARAA
@
e d a9 SEASS L
]
e o
SRR AR AR A A R A R AL A A e
Q l.l.l.l.l.l.l.l.\\
Q S
0 +eed49ddEddddodddddd N
q
!
o
a8 N
p
% ISOREOENEEEEEEEENNNN
< AECIRASOABPANDRAE AS
T
T

4°E 6°E 8°E 10°E 12°E 14°E

16°E 18°E

Both grids are of spatial class SpatialPixels. Because of the grid res-
olution, some areas of Germany, including the observation stations at
Sylt in the extreme N and Zittau in the extreme SE, were missed by the

overlay of the bounding polygon.

33

6 Spatial prediction

We can now map PM10 concentrations over Germany on any day for

which we have station measurements and for which we have computed
a variogram model.

TASK 27 : Predict PM10 concentration over the 0.25°x 0.25° geographic
grid, on the selected day, by Ordinary Kriging. Plot the predictions. .

Note: Since the prediction is over blocks, it might be preferable to use
block kriging to predict an average PM10 concentration. Using punctual
kriging gives single prediction at the block centre only; the single value
there is presumed to represent any point location in the block. However,
the krige function has not implemented block kriging for geographic co-

ordinates. It would be necessary to transform the datasets into metric
cooOrdinates.

proj4string(r.date) <- CRS(proj4string(r.date))
k.one <- krige(PM10 ~ 1, loc=r.date[!is.na(r.date$PmM10),],
newdata=de.grid, model=vom)

[using ordinary kriging]
spplot(k.one, zcol="varl.pred", col.regions=bpy.colors(64),

main=paste("PM10 on",date.ix),
sub="single day variogram model™)

PM10 on 2009-03-22

| 40

r 35

single day variogram model

The uncertainty of prediction is given by the kriging prediction variance.
The standard deviation is on the same scale as the prediction and thus
easier to interpret. Even easier is the coefficient of variation.

TAsK 28 : Plot the kriging prediction standard deviation and coefficient
of variability.

34

k.one$varl.sd <- sqrt(k.one$varl.var)

k.one$varl.cv <- 100xk.one$varl.sd/k.one$varl.pred

spplot(k.one, zcol="varl.sd", col.regions=terrain.colors(64),
main=paste("PM10 on",date.ix, "Prediction s.d."),
sub="single day variogram model")

spplot(k.one, zcol="varl.cv", col.regions=cm.colors(64),
main=paste("PM10 on",date.ix, "Coefficient of variation"),
sub="single day variogram model™)

PM10 on 2009-03-22 Prediction s.d. PM10 on 2009-03-22 Coefficient of variation
] s [F3s
. 7 [30
|
r 6 25
‘.
m H m s L2
Il -. - | | ré
| | | | 15
15 :
10
2
l 5
1 L

single day variogram model single day variogram model

Q18: Where are the highest kriging prediction variances and the highest
coefficients of variation? Why? Jump to A18 e

7 Investigating temporally-averaged spatial structure

One way to obtain a more reliable variogram model is to compute a so-
called lumped-time model; that is, spatial structure averaged over time.
This assumes that the spatial structure is the same over time, although
the data values change. In this case we can compute a lumped or aver-
aged spatial variogram, using many dates as replications. This will give a
large number of point-pairs and allow reliable variogram modelling. The
resulting variogram model could be then applied at each date to produce
that date’s map; this avoids the need to compute variogram models on
each date from small point sets.

TASK 29 : Sample 100 dates at random as a SpatialPointsDataFrame,
with an extra attribute (besides the PM10) to record the date. .

Note: We do not use the entire dataset because it would be very large;
if our assumption is correct any reasonably large subset should give the
same result.

The Tapply function applies a function over a list; here we build a list
of the date indices with the sample function applied to the time (2nd)
dimension of the spacetime object.

35

The function to apply is a here written by us, using the function func-
tion'”. This user-defined function first extracts the station information
at the given date, then adds a new variable to the data frame, and fi-
nally returns the newly-composed object. This list is then converted to
a single dataframe with the rbind function applied to the list with the
do.call function.

Note: The set.seed function initialises the random number generator;
this is only necessary if you want your results to be the same as these. In
principle you should get similar results with any (or no) random seed.

set.seed(6345789)
sort(sample.index <- sample(dim(r5tol0)[2], 100))

[1] 36 41 53 54 69 100 144 167 177 193 195 206 210
[14] 230 240 280 281 306 362 379 384 389 427 431 457 495
[27] 497 514 516 518 539 583 617 667 670 675 678 687 691
[40] 731 757 781 836 839 862 905 906 918 946 960 969 975
[53] 986 1011 1030 1035 1046 1062 1083 1094 1109 1111 1126 1129 1138
[66] 1158 1216 1281 1282 1290 1302 1320 1324 1330 1398 1416 1442 1443
[79] 1448 1461 1497 1509 1518 1540 1554 1576 1582 1586 1596 1646 1664
[92] 1686 1696 1711 1723 1731 1743 1754 1773 1818

spdf.1st <- Tlapply(sample.index,
function(i) {
X = r5tol0[,i]
x$ti = 1
return(x)}

)
spdf <- do.call(rbind, spdf.l1st)
summary (spdf)

Object of class SpatialPointsDataFrame
Coordinates:
min max
coords.x1l 6.28107 14.78617
coords.x2 47.80847 54.92497
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0]
Number of points: 5300
Data attributes:

PM10 ti

Min. : 0.727 Min. : 36.0
1st Qu.: 9.601 1st Qu.: 485.5
Median : 13.950 Median : 964.5
Mean : 16.696 Mean 1 925.2
3rd Qu.: 20.583 3rd Qu.:1402.5
Max . :109.094 Max . :1818.0
NA's 11193

Note: The function can be more compactly written as:
function(i) {x = r5tol0[,i]; x$ti = i; x}

TASK 30 : Compute and model the lumped variogram. .

We again use the variogram method of the gstat package, but with
some differences to make a pooled variogram. First, we specify a regres-
sor, here the time index (field t1), i.e., the variogram is residual after ac-
counting for the time of each observation. This is necessary because the

10 Confused? Read again!

36

different dates will generally have different overall levels of PM10, even
though we assume the same spatial structure. So the formula PM10 ~ ti
removes the mean PM10 for at each time, before computing the semi-
variances. Second, the dX optional argument specifies the maximum
distance of the regressor for which point-pairs will be included in the
variogram. Here we specify dX=0, meaning that only observations on the
same date (the regressor) will be included in the calculation.

vl <- variogram(PM10 ~ ti, spdf[!is.na(spdf$PM10),], dX=0)
plot(vl, plot.numbers=T, main=paste("PM10, 200 random days lumped"))
(vlm <- fit.variogram(vl, model=vgm(60, "Exp", 250/3, 0)))

mode psill range
1 Nug 2.690848 0.0000
2 Exp 60.463423 106.1837

plot(vl, plot.numbers=T, model=vim, main="PM10, 200 random days lumped")

PM10, 200 random days lumped PM10, 200 random days lumped
I I I I
4884 88 4884 88
4980 4980
] 4202 | 4 4202 |
60 4238 60 202
439470 4398470

50 - 50 o ~ -
° 8256 8544 ° 256 8544
2 409 1799 r g2 40+ r
g 8674 8 3674
3 8
2 2
§ 30 4 1364572 r % 30 1364572 r

/
1205 1205
20 e 20 H e
/
10 4 = 104 / =
282 /282
/
T T

T T T T T T T T T T
50 100 150 200 250 300 50 100 150 200 250 300
distance distance

Q19 : Describe the variogram. Does it provide evidence of spatial corre-
lation of PM10 on the selected date? How does the fitted model compare
to the model for the first date? Jump to AI19 e

8 Spatial prediction with a temporally-averaged spatial structure

TAsK 31 : Predict PM10 concentration over the 0.25° x 0.25° geographic
grid, on the selected day by Ordinary Kriging, but now with the lumped
variogram. Plot the kriging predictions next to the prediction from the
single-date variogram model, on the same scale. o

k.one.Tumped <- krige(PM10 ~ 1, Toc=r.date[!is.na(r.date$PM10),],
newdata=de.grid, model=vim)

[using ordinary kriging]

Tegend.breaks <- seq(floor(min(k.one$varl.pred, k.one.lumped$varl.pred)),
ceiling(max(k.one$varl.pred, k.one.lumped$varl.pred)),
by=0.5)

spplot(k.one.Tumped, zcol="varl.pred", col.regions=bpy.colors(64),

main=paste("PM10 on",date.ix),
sub="Tumped variogram model",
at=legend.breaks)

37

spplot(k.one, zcol="varl.pred", col.regions=bpy.colors(64),
main=paste("PM10 on",date.ix),
sub="single day variogram model",
at=1egend.breaks)

PM10 on 2009-03-22 PM10 on 2009-03-22

35

30

25

20

15

lumped variogram model single day variogram model

TAskK 32 : Plot the differences between the two predictions. .

summary (k.one$diff <-
k.one$varl.pred - k.one.lumped$varl.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.15195 -0.53228 0.02291 -0.06277 0.40996 0.97843

spplot(k.one, zcol="diff", col.regions=topo.colors(64),
main=paste("PM10 prediction difference,",date.ix),
sub="single day minus lumped variogram models")

PM10 prediction difference, 2009-03-22

10

05

single day minus lumped variogram models

Q20 : How similar are the predictions made with the single-date and
lumped variogram models? Jump to A20 e

TAsSK 33 : Plot the kriging prediction standard deviations from the
averaged and single-day variogram model predictions, side-by-side on
the same scale. .

38

k.one.Tumped$varl.sd <- sqrt(k.one.lumped$varl.var)
Tegend.breaks <- seq(floor(min(k.one$varl.sd, k.one.lumped$varl.sd)),
ceiling(max(k.one$varl.sd, k.one.lumped$varl.sd)),
by=0.5)
spplot(k.one.Tumped, zcol="varl.sd", col.regions=terrain.colors(64),
main=paste("PM10 on",date.ix,"prediction s.d."),
sub="Tumped variogram model",
at=1egend.breaks)

spplot(k.one, zcol="varl.sd", col.regions=terrain.colors(64),
main=paste("PM10 on",date.ix,"prediction s.d."),
sub="single day variogram model",
at=legend.breaks)

PM10 on 2009-03-22 prediction s.d. PM10 on 2009-03-22 prediction s.d.

o e B
1% 1.1

£ 2

1 ’ #
lumped variogram model ' single day variogram model '
Q21 : How similar are the prediction standard deviations from the
single-date and lumped variogram model kriging predictions? Jump to

A2] e

This is as far as we want to go with spatial modelling and interpolation.
The really interesting part comes now, when we combine space and time
in the analysis.

9 Investigating spatio-temporal structure

Now we consider both space and time together. One way to do this is
to look at the spatial variograms at different time lags - that is, how
correlated are observations in space, but at different times?

The hypothesis here is that the spatial structure becomes weaker as the
time differences increase.

TASK 34 : Compute a spatio-temporal variogram of the stations over
time. o

The spatio-temporal variogram summarizes the semivariance at all com-
binations of space and time separations. A single semivariance is esti-
mated as:

1
y(hu) =3 D (zst — Zs+ht+u)® (10)

39

These are summarized in spatio-temporal bins, to have enough point-
pairs to estimate structure.

If the variogram method of the gstat package is passed an object of
class STFDF, it will specialise to the variogramST function, which will
be used to compute a spatio-temporal variogram. With all stations and
times, this can take a while; to see how long we use the system.time
function, which records the elapsed time necessary to run any R code
supplied as its argument.

Here you can see the results on the author’s system:
system.time(vst <- variogramST(PM10 ~ 1, r5tol0))

user system elapsed
717.436 90.161 807.852

This took about 13.5 minutes on the author’s system. As a compromise,
you could compute this on a sequence of times, e.g., over the first 200
days:

system.time(vst <- variogramST(PM10 ~ 1, r5tolO[,1:200]))

user system elapsed
56.821 0.813 57.688

This took a bit less than one minute on the author’s system.

We continue with the full space-time variogram,; if you computed with a
shorter time sequence your results will look somewhat different.
summary (vst)

np dist gamma
Min. : 0 Min. : 0.00 Min. : 11.54
1st Qu.: 60115 1st Qu.: 75.87 1st Qu.: 83.95
Median :124608 Median :163.46 Median : 99.23

Mean 1106520 Mean :155.55 Mean : 93.55
3rd Qu.:150068 3rd Qu.:242.30 3rd Qu.:109.21
Max. : 180704 Max. :318.74 Max . :121.51
NA's 11 NA's 11
id timelag spacelag
Length:256 Min. : 0.00 Min. : 0.00

Class :character 1st Qu.: 3.75 1st Qu.: 71.27
Mode :character Median : 7.50 Median :153.51

Mean : 7.50 Mean :154.20
3rd Qu.:11.25 3rd Qu.:235.75
Max . :15.00 Max . :317.99

Note that the subset must be a sequence, because of the assumption of
equal time lags between observations on the time axis.

TASK 35 : Plot the spatio-temporal variogram. o

Plotting in three dimensions (two space, one time) is challenging; we
look at three visualisations. First, a 2.5D plot with time vs. separation,
with the semivariances shown as a colour ramp. This uses the plot
method, but when applied to an object of class STFDF it specializes to
the plot.gstatVariogram method. Its default space-time variogram
plot is the 2.5D plot.

40

plot(vst, xlab="separation (km)", ylab="separation (+days)",
main="Semivariance, PM10")

Semivariance, PM10

1 1 1 1 1 1

120

100

80

60

separation (+days)

40

20

0 50 100 150 200 250 300
separation (km)

Note: Since the sequence of average separations is generally not at equal
intervals, the underlying Tevelplot graphics function of the lattice
package gives a warning to this effect. Since the separations are averages
but not too different from the centres of the variogram bins, this does
not seriously affect the visualization.

Second, parallel spatial variograms, one per time lag. This also uses the
plot.gstatVariogram method

plot(vst, map = FALSE, xlab="separation (km)",
ylab = "Semivariance, PM10")

1 1 1 1

120 4

Y/

80

)

Q

@
6000000

gamma

60 —

40 = lag12

20 lagl5

T T T T T T
50 100 150 200 250 300

separation (km)

Third, a 3D wireframe plot, showing both space and time; this is obtained

by specifying the optional wireframe argument to plot.gstatVariogram:

Tibrary(lattice)
plot(vst, wireframe=TRUE)

41

- 120

- 100

80

gamma

60

40

time% /

distance (km)

l

20

Q22 : What is the approximate semivariance at 150 km spatial and 5
days temporal separation (time lag)? Jump to A22 e

To answer this, we extract the relevant row from the space-time var-
iogram, using logical conditions ==, < and >, joined with the& logical
operator:

str(vst)

Classes 'StVariogram' and 'data.frame': 256 obs. of 6 variables:

$ np : num O 5131 21920 24689 30139 ...
$ dist : num NA 16.3 34.3 57.2 75.9 ...
$ gamma : num NA 11.5 26.6 27.9 31 ..
$ id : chr "lag0" "Tag0" "lag0" "lag0" ...
$ timelag : num 0000000000 ...
..- attr(*, "units")= chr "days"
$ spacelag: num O 11 32.9 54.8 76.8 ...
..- attr(x, "units")= chr "km"

- attr(x, "boundaries")= num 0 21.9 43.9 65.8 87.7 ...

vst[(vst$timelag==5) & (vst$spacelag > 140) & (vst$spacelag < 160),]

np dist gamma id timelag spacelag
88 133395 142.999 88.23597 Tlags 5 142.5486
Q23 : Describe the spatio-temporal dependence structure. Jump to

A23 e

42

10 Modelling spatio-temporal structure

We now attempt to model the spatio-temporal dependence revealed in
the variogram. There are several possible models, differing on how they
combine the temporal and spatial dependences. Here we consider three,
in increasing order of complexity.

1. The simplest is the metric model (§10.1): time is considered as
another dimension, which must be re-scaled to match the spatial
dimension

2. The separable model (§10.2) has separate spatial and temporal
structures, which are considered to interact only multiplicatively
and so can be fit independently but with a common sill.

3. The sumMetric model (§10.3) has separate terms for the spatial
and temporal components, and an interaction component for the
residuals not accounted for by these two.

10.1 Metric models

The simplest approach is a metric model: time is just another dimen-
sion, which must be re-scaled to match the spatial dimension. The time
dimension is of course anisotropic - the dependence in the time dimen-
sion is on a different scale than that in the two space dimensions. The
assumed covariance structure is:

C(h,u)=C (\/hz + (o<u)2> (11)

where h is the distance lag, generally 2D, u is the time lag, here another
“dimension”, and « is a scaling factor (“metric”) to match spatial and
temporal units.

The covariance structure allows geometric anisotropy between space
and time, i.e., same structure, nugget and partial sill but the range varies
in different dimensions (here, the time vs. space dimensions). For exam-
ple, & = 20 km d~! means that a lag of 20 km in space is equivalent to a
lag of 1 day in time.

Space-time variograms are structured as lists, built with the vgmST func-
tion of gstat, with various components depending on the type of var-
iogram. For a metric variogram, specified as "metric" in the stModel
argument, there is a joint argument, which specifies a spatial variogram
model specified with the vgm “variogram model” function of gstat; also
a nugget argument to specify the joint nugget (semivariance at zero time
and distance lag), and an anisotropy factor for the time dimension spec-
ified with the stAni argument.

The critical parameter here is the time anisotropy; we estimate this by
looking at the ratio of the two axes when arriving at a similar semi-
variance. One way to estimate this is to compute the anisotropy ratio

43

(distance/time) for all the variogram bins within a certain range of semi-
variances, summarize it, and use the mean ratio within this range as the
initial value.

dim(tmp <- vst[(vst$gamma > 70) &
(vst$gamma < 80) &
(vst$timelag !=0),]1)

[1] 15 6
summary(metric.aniso <- tmp$spacelag/tmp$timelag)

Min. 1st Qu. Median Mean 3rd Qu. Max .
0.000 1.645 27.413 62.831 71.274 317.993

Now build the initial metric variogram model:

(vgm.metric <- vgmST(stModel="metric",
joint=vgm(50, "Exp",100,0),
nugget=10,
stAni=mean(metric.aniso)))

joint component:
model psill range
1 Nug 0 0
2 Exp 50 100
stAni: 62.8310483257133

The fit.StVariogram function fits the estimate to the empirical vari-
ogram. This has an optional method argument that specifies how op-
timization is to be done; this is passed to R’s standard optim “general
purpose optimization” function. Since non-linear optimization is sensi-
tive to starting values and may not converge, to avoid excessive compu-
tation we use the optional control argument to control the behaviour of
optim. This argument is a list of control parameters; we specify maxit
“maximum number of iterations”.

vgmf.metric <- fit.StVariogram(vst, vgm.metric,
method="L-BFGS-B",
control=Tlist(maxit=1024))
print(vgmf.metric)

joint component:

mode psill range
1 Nug 6.676082 0.0000
2 Exp 98.126933 307.0716
stAni: 160.214957645994

Q24 : What are the parameters of the fitted model, including the time
anisotropy? Jump to A24 e

TASK 36 : Plot the fitted model along with the empirical variogram. e

The plot method has a specialization plot.gstatVariogram for empir-
ical variograms and their fitted models. For space-time variograms these
take the form of a 2.5D space-time matrix or a set of parallel variograms,
see above.

plot(vst, vgmf.metric)
plot(vst, vgmf.metric, map=FALSE)

44

1 1 1 1 _ 1 1 1
metric
15 -

100

80

10 -

60

time lag (days)

40

20

0

0 50 100 150 200 250 300

distance (km)

1 1 1 1 1 1
metric
100 — =

° lag0

P e lagl

lag2

80 r lag3

lag4

lag5

lagé

E 60 - = lag7

IS lag8

= lag9
lag10
40 + = lagll
lag12
lag13
lag1l4
20 L lag15

T T T T T T

50 100 150 200 250 300
distance (km)

Q25 : How well does the model fit the empirical variogram? What can
you conclude about the appropriateness of the metric model? Jump to
A25 e

10.2 Separable models

The metric model is rarely realistic; more common is a separable model
where space and time are fit independently. There is interaction between
space and time, but it is simply the product of the two dimensions con-
sidered separately. The covariance structure is:

C(h,u) = Cs(h) - Ce(u) 12)

To fit such a model, we model the spatial and temporal dependences sep-
arately; however since the two covariances are multiplied, there can only
be one total variogram sill. This maximum semivariance corresponds
to the minimum covariance when there is no spatial or temporal depen-
dence. The spatial and temporal sills are then expressed as proportions
of the total sill. The “distance” units for the spatial and temporal depen-
dence are the squares of the original units, so there is no need to re-scale
time to match space, as was necessary in the metric model.

45

TASK 37 : Build and fit a separable space-time variogram model. .

Here there is no anisotropy because time is not considered as another
“spatial” dimension. The two ranges (space and time) are expressed in
their units, here km (space) and days (time). We estimate their values
from the empirical variogram. For space, use the lag-O variogram; recall
that the exponential variogram model’s range parameter is 1/3 of the
effective range (where the variogram reaches 95% of the partial sill). For
time, use the lag when there appears to be no more spatial structure in
that lagged spatial variogram.

In a separable model there are five parameters:
1. spatial range;
2. proportional spatial nugget;
3. temporal range;
4. proportional temporal nugget;
5. overall sill, specified with the si11 argument

The partial sill arguments in the space and time variograms are ignored
in favour of the specified overall sill; they are kept at a constant (1 -
nugget) for space and time; these are then proportional to the overall
total sill.

The overall sill can be estimated from the empirical variogram as some
proportion of the maximum semivariance in the space-time variogram.
(estimated.sill <- quantile(na.omit(vst$gamma), .8))

80%
109.856

(vgm.sep <- vgmST(stModel="separable",
space=vgm(0.9,"Exp", 300,0.1),
time=vgm(0.95,"Exp", 2, 0.05),
sill=estimated.sil1))

space component:
model psill range
1 Nug 0.1 0
2 Exp 0.9 300
time component:
model psill range
1 Nug 0.05 0
2 Exp 0.95 2
sill: 109.85600255371

Fitting is again with fit.StVariogram. However, we have to ensure
that the optim “optimize” function called by fit.StVariogram does not
try to use un-physical values, in particular, negative ranges or semivari-
ances. This can be ensured by passing the optional Tower argument to
optim. We use the c function to make a vector of five reasonable limit-
ing values. We limit the nuggets to just above zero to avoid convergence
problems, and again limit the iterations.

46

The attributes of the fitted model include the fitted parameters and the
value of the optimization function.

vgmf.sep <- fit.StVariogram(vst, vgm.sep,
method="L-BFGS-B",
Tower=c(100,0.001,1,0.001,40),
control=list(maxit=500))
class(vgmf.sep)

[1] "StVariogramModel" "Tist"
attr(vgmf.sep, "optim.output")$par

range.s nugget.s range.t nugget.t sill
384.257141 0.117017 2.614601 0.001000 106.045063

attr(vgmf.sep, "optim.output")$value

[1] 74.90121

plot(vst, vgmf.sep)
plot(vst, vgmf.sep, map=FALSE)

1
separable

15 -
100
80

& 107 L

g

S 60

o

8

Q

£

= 5 - 40
20

150 200 250 300

distance (km)

separable

100 —5— — L

80 —

\\\\
T
DOIDD
QQQQ
PN NY=
000000

60 - F lag7

gamma
&
[s3)

20 - L lag15

T T T T T T
50 100 150 200 250 300

distance (km)

Q26 : Compare the variogram fits with the metric and separable mod-
els. Which model appears to best match the empirical spatio-temporal
variogram? Jump to A26 e

47

10.3 Sum-metric models

The metric model (§10.1) can not represent interaction between space
and time; the separable model (§10.2) can only represent the interactions
a product of two marginal variograms. A more flexible model form to
represent interactions is the sum-metric mode, with the following co-
variance structure:

C(h,u) = Cs(h) + Ct(u) + Cst (\”’lz + (om)z) (13)

where h is the distance lag, u is the time lag, and « is a scaling factor
(hence the “metric”) to match spatial and temporal units in the interac-
tion term. The interaction term has the same structure as the metric
model, but here only applying to the residuals after accounting for the
marginal spatial and temporal correlations. Thus the marginal spatial
and temporal semivariances are added, along with the interaction term.

The interaction term allows geometric anisotropy, i.e., same structure,
nugget and partial sill but the range can vary in different dimensions
(here, the time vs. space dimensions), but here (unlike in the metric
model) only for the residuals.

This model has been successfully used by Heuvelink and collaborators
in several studies [e.g. 9, 10].

As the models get more complicated, so does their parameterization.
The sum-metric model requires 10 parameters:

- the spatial marginal variogram, 3 parameters: partial sill, nugget,
range; this model is specified with the space argument;

- the temporal marginal variogram, 3 parameters: partial sill, nugget,
range; this model is specified with the time argument;

- the space-time residual variogram, 4 parameters: (1) partial sill,
nugget, range of the residuals; this model is specified with the
joint argument; (2) anisotropy ratio of the residuals, i.e., the ratio
between the space and time and ranges; this multiplies the time lag
to match the space lag.

The two marginal variograms can be estimated by the variograms at lag
0 in the remaining dimension:
(v.sp <- vst[vst$timelag==0,c("spacelag", "gamma")])

spacelag gamma
0.00000 NA
10.96528 11.53544
32.89584 26.60173
54.82639 27.85167
.75695 31.02826
98.68751 36.03219
120.61807 40.70121
142.54863 35.52874
164.47918 44.46770
10 186.40974 52.97760
11 208.34030 50.29442

OWooNOOUVIEA WN R
~N
[o)]

48

12 230.27086 62.08886
13 252.20142 58.76482
14 274.13197 57.89326
15 296.06253 56.79585
16 317.99309 62.91278

(v.t <- vst[vst$spacelag==0,c("timelag", "gamma")])

timelag gamma
1 0 NA
17 1 33.10095
33 2 56.56212
49 3 70.14048
65 4 79.06865
81 5 84.50289
97 6 87.60269
113 7 88.86242
129 8 88.20736
145 9 88.38639
161 10 88.38651
177 11 89.55300
193 12 89.96482
209 13 90.69451
225 14 91.05768
241 15 90.86111

Since exponential models are used, the range parameter is specified as
1/3 of the effective range as estimated from the marginal variogram, i.e.,
where the semivariance reaches 95% of the estimated sill. For example,
here by inspection the space-marginal variogram appears to reach a sill
at about 240 km and the time-marginal variogram at about 6 days, so
the corresponding initial values are 240/3 and 6/3. The anisotropy pa-
rameter stAni is estimated as the ratio of these two, i.e., the distance
equivalent to days to reach the respective effective ranges. Here we esti-
mate as 240/6 km d-1.

Note: The gstat package version 1.0-25 and later now has a function
estiStAni to estimate this parameter; I have not experimented with it.

To estimate the parameters of the joint variogram, we look at the space-
time empirical variogram, in both the grid and line forms:

pl <- plot(vst)

p2 <- plot(vst, map=F)

plot(pl, split=c(1,1,2,1), more=T)

plot(p2, split=c(2,1,2,1), more=F)

15 1 -

100

H
1S
|
T

time lag (days)
gamma

@
|
T
oy
Q
=3
[

40 40 r lag12

20 + I

T T T T T
0 50 100 150 200 250 300 50 100 150 200 250 300

distance (km) distance (km)

49

We find the range at which there seems to be no more interaction be-
tween space and time, that is, where the single-time variograms have the
same shape, but with different total sills. This is in distance (space) units;
here we estimate about 50 km effective range, which again is divided by
3 because the model is exponential. It is reasonable to specify a zero
nugget; we assume the nugget effects are in either space or time but not
their interaction. The partial sill is estimated as the semivariance at zero
time lag at this estimated range; here this appears to be about 30.

vgm.sum.metric <- vgmST(stModel="sumMetric",

space=vgm(0.9*max(v.sp$gamma, na.rm=TRUE),
"Exp", 250/3,0),

time=vgm(0.9*max(v.t$gamma, na.rm=TRUE),
"Exp", 6/3, 0),

joint=vgm(30,
"Exp",50/3, 0),

stAni=240/6)

Fitting is again with fit.StVariogram. We again bound the parameters;
these are in the order: spatial sill, range, nugget; temporal sill, range,
nugget; joint sill, range, nugget; joint anisotropy.

The nuggets and ranges must be bounded below by zero; note that optim
has no way of knowing that it is fitting a variogram model, which can
not have negative values of any parameter. The lower bounds for the
marginal sills can be estimated from the 3D wireframe plot of the empir-
ical variogram and from the empirical variogram itself.

We estimate the two marginal sill lower bounds as 70% of the respective
maximum marginal semivariances. The interaction sill lower bound is set
to zero, in case there is no interaction of the space and time residuals.
The range lower bounds are the first bin where the lower bound of the
respective marginal sill is exceeded, less one bin.

(sp.sill.1b <- 0.7 * max(v.sp$gamma, na.rm=TRUE))

[1] 44.03895

(sp.range.lb <- v.sp[which(v.sp > sp.sill.1b)[1]-1, "spacelag"])
[1] 32.89584

(t.sil11.7b <- 0.7 * max(v.t$gamma, na.rm=TRUE))

[1] 63.74037

(t.range.lb <- v.t[which(v.t$gamma > t.sil11.1b)[1]-1, "timelag"])
[1] 2

We again time the fitting with the system. time function:

system.time(vgmf.sum.metric <-
fit.StvVariogram(vst, vgm.sum.metric,

method="L-BFGS-B",

control=Tlist(maxit=500),

Tower=c(sp.sill.lb, sp.range.1b/3,0,
t.sill.1b, t.range.lb/3,0,
0,1,0,
D)

user system elapsed

50

20.313 0.042 20.382

attr(vgmf.sum.metric, "optim.output")$par

sill.s range.s nugget.s sill.t range.t nugget.t
44.038948 511.785848 5.141498 65.366211 2.410724 0.000000
sill.st range.st nugget.st anis

3.701447 1.005772 20.522214 49.557274
attr(vgmf.sum.metric, "optim.output")$value
[1] 60.26628

Here are the empirical variograms, along with the fits:

plot(vst, vgmf.sum.metric)
plot(vst, vgmf.sum.metric, map=FALSE)

1
sumMetric 120

15 -
100
,U;, 10 - 80
©
2
g
o 60
£
= 5 [
40
0 20
0 50 100 150 200 250 300

distance (km)

sumMetric

>
Q
)
00000

gamma

20 4 | lagls

T T T T T
50 100 150 200 250 300
distance (km)

Q27 : Compare the variogram fit from the sum-metric model with the
metric and separable models. What features of the empirical variogram
does it better represent? Jump to A27 e

Challenge: The model fitting by optimization is usually sensitive to the
initial parameters and the control list. Experiment with different settings
to see how much the fitted parameters change as these are varied.

51

10.4 Comparing variogram model fits

TASK 38 : Compare the goodness-of-fit of the three models to the em-
pirical variogram. o

The goodness-of-fit is expressed by the error sum of squares in the
value attribute of the fitted model:
attr(vgmf.metric, "optim.output")$value

[1] 83.12474

attr(vgmf.sep, "optim.output")$value

[1] 74.90121

attr(vgmf.sum.metric, "optim.output")$value

[1] 60.26628

Q28 : Which space-time model best fits the empirical space-time vari-
ogram? Jump to A28

11 Spatio-temporal kriging

We now have several models of space-time dependence, which we can
use to predict by kriging, over a user-defined grid of prediction locations.
To predict over Germany on any given day, we must assume that the
space-time structure as modelled applies to that day and surrounding
days, up to the temporal range of the fitted variogram model. That is,
we assume second-order stationarity in space, in time, and in space-time
interaction as expressed in the covariance model.

We have a spatial grid; to do space-time kriging the grid must have both
a space and time component.

TASK 39: Add a time component, with daily time resolution for six days
of your choice in the 2005 - 2010 period, to the spatial grids created in
§5. o

I arbitrarily chose 21-26 June 2006 as the time series. Note the use of
the / symbol to indicate a date range for the time dimension.

rr.t <- r5tol0[,"2006-06-21/2006-06-26"]
class(rr.t)

[1] "STFDF"
attr(, "package™)
[1] "spacetime"

class(rr.t@time)

[1] "xts" "zoo"

52

TASK 40 : Display the point observations as a coloured post-plot for the
six days. .

A time-series of maps contained in a STFDF object can be plotted by
the stplot function of the spacetime package. By default (optional
argument mode as "xy"), one map is produced for each time step.

To help with the geographic visualization, we add the boundary of Ger-
many with the optional sp.Tayout argument to the spplot method,
which is called by the stpTlot function of the spacetime package.

stplot(rr.t, col.regions=bpy.colors(64),
sp.Tlayout=1ist(1list("sp.polygons",de.boundary)))

PM10
2006-06-21 2006-06-22 2006-06-23

9.453]
453,11.91
1,14.36
6,16.81
1,19.26
26.21.72
72:24.17
17,26.62

1.9
4.3
6.8
9.
1.
4.
6622907
9.
1.
3.
6.
8.
1.

07,31.53
53,33.98
98,36.43
43,38.88
88,41.34

[7
(9.45
(1
(1
(1
(1
(2
(2
(2
(2
(3
(3
(3
(3
(41.34,43.79

TASK 41 : Create an interpolation grid over the entire bounding box,
and just for the portion (partially) covered by Germany. .

The STF method creates a full space-time grid; it requires two arguments:
the space and time components:

- For the space component, we already have the Germany grid cre-
ated in §5;

53

- for the time component, we have the @time slot of the restricted
STFDF object; these are the dates for which we want to interpolate

over Space.

rr.t <- as(rr.t,"STSDF")
de.bbox.grid <- STF(sp=as(de.bbox.grid,"SpatialPoints"), time=rr.t@time)
de.grid <- STF(sp=as(de.grid,"SpatialPoints"), time=rr.t@time)

Note: The STSDF class is used for for spatio-temporal data with partial
(not complete) space-time grids. It differs from class STFDF for full space-
time grids by maintaining an index table showing which nodes in the
incomplete grid have observations. Since the distances between stations
are not regular, we must use STSDF for the observations.

TASK 42 : Predict over the 6-day space-time grid of Germany by kriging
with the three fitted space-time models. o

The krigeST of the gstat package predicts by spatio-temporal krig-
ing, using fitted variogram models as in the previous sections, the orig-
inal space-time data as an ST object (argument data), and the space-
time locations of points to be predicted, also as an ST object (argument
newdata).

Note: The krigeST function was designed to exploit separability of
spatio-temporal covariance models, and so works most efficiently with
full spatio-temporal grids, i.e., of class STFDF. However, here the observa-
tions are of class STSDF because the spatial grid is not regular.

k.de.met <- krigeST(PM10~1, data=rr.t, newdata=de.grid,
modelList=vgmf.metric)
gridded(k.de.met@sp) <- TRUE

k.de.sep <- krigeST(PM10~1, data=rr.t, newdata=de.grid,
modelList=vgmf.sep)
gridded(k.de.sep@sp) <- TRUE

k.de.sum.metric <- krigeST(PM10~1, data=rr.t, newdata=de.grid,
modelList=vgmf.sum.metric)
gridded(k.de.sum.metric@sp) <- TRUE

TASK 43 : Display the resulting maps on the same visual scale. o

The stpTlot function of the spacetime package create trellis plot for ST
objects. By default, each time step’s result is plotted in a separate panel.

To show the three predictions on the same visual scale, we compute
their common maximum and minimum prediction using the floor and
ceiling functions:

plot.zlim <- seq(floor(min(k.de.met$varl.pred,
k.de.sep$varl.pred,
k.de.sum.metric$varl.pred)),
ceiling(max(k.de.met$varl.pred,
k.de.sep$varl.pred,
k.de.sum.metric$varl.pred)),
by = 0.5)

stplot(k.de.met, main="PM10, Germany",
sub="Metric model",

54

col.regions=bpy.colors(length(plot.zlim)),
at=plot.z1im)

stplot(k.de.sep, main="PM10, Germany",
sub="Separable space-time model",
col.regions=bpy.colors(length(plot.z1im)),
at=plot.z1im)

stplot(k.de.sum.metric, main="PM10, Germany",
sub="Sum-metric space-time model",
col.regions=bpy.colors(length(plot.zlim)),
at=plot.zlim)

PM10, Germany
2006-06-21 2006-06-22 2006-06-23

: L
2006-06-24 2006-06-25 2006-06-26

- 35

- 30

Metric model

55

PM10, Germany

2006-06-21

2006-06-22

2006-06-23

"
"y

- 35

- 30

2006-06-24

2006-06-25

2006-06-26

Separable space-time model

PM10, Germany

2006-06-21

2006-06-22

2006-06-23

- 35

- 30

2006-06-24

2006-06-25

2006-06-26

",
",

Sum-metric space-time model

56

TASK 44 : Compare the model predictions. o

For each combination we summarize the differences non-spatially, and
then display maps of the differences.

First, metric vs. separable:

k.de.diff <- k.de.sep
k.de.diff$varl.pred <- (k.de.sep$varl.pred - k.de.met$varl.pred)
summary (k.de.diff$varl.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-6.42541 -0.44205 0.07891 -0.08387 0.50698 2.79610

stplot(k.de.diff, main="PM10, Germany",

sub="Difference, Separable Tess metric model predictions",
col.regions=topo.colors(64))

PM10, Germany
2006-06-21 2006-06—-22 2006-06-23

2006-06-24 2006-06-25 2006-06-26 - -2

Difference, Separable less metric model predictions

Second, metric vs. sum-metric:

k.de.diff <- k.de.sep
k.de.diff$varl.pred <- (k.de.sum.metric$varl.pred - k.de.met$varl.pred)
summary (k.de.diff$varl.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-14.1622 -1.6661 -0.1393 -0.1859 1.7087 8.4570

stplot(k.de.diff, main="PM10, Germany",

sub="Difference, sum-metric less metric model predictions",
col.regions=topo.colors(64))

57

PM10, Germany

2006-06-21 2006-06—-22 2006-06-23
-5
_ | -
‘ » ,
2006-06-24 2006-06-25 2006-06-26

4

5_.'

Difference, sum-metric less metric model predictions

Finally, sum-metric vs. separable:

k.de.diff <- k.de.sep

k.de.diff$varl.pred <- (k.de.sum.metric$varl.pred - k.de.sep$varl.pred)
summary (k.de.diff$varl.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max .
-12.02653 -1.47391 0.05176 -0.10200 1.71715 7.55837

stplot(k.de.diff, main="PM10, Germany",
sub="Difference, sum-metric less separable model predictions",
col.regions=topo.colors(64))

58

PM10, Germany

2006-06-21 2006-06-22 2006-06-23
- i
-0

2006-06-24 2006-06-25 2006-06-26

Difference, sum-metric less separable model predictions

Q29 : Describe the principal differences between the three predictions.
Jump to A29 e

We can see all three predictions, and the observation values, for any one
day, by extracting single day kriging predictions.

TAsK 45 : Combine the three predictions for 25-June-2006 into the
same data frame portion of a SpatialPixelsDataFrame object. .

The kriging predictions are of class STFDF, but if only one day is selected
with the [] operator, the result is a SpatialPixelsDataFrame object,
with only one variable: the kriging prediction. Predictions from other
SpatialPixelsDataFrames can similarly be extracted, and their single
variables, found in the data slot, can be added as new columns using
the cbind “column bind” function.

class(k.de.met)

[1] "STFDF"

attr(, "package™)
[1] "spacetime"

k.de.day <- k.de.met[,"2006-06-25"]

k.de.day@data <- cbind(k.de.day@data, k.de.sep[,"2006-06-25"]@data)
k.de.day@data <- cbind(k.de.day@data, k.de.sum.metric[,"2006-06-25"]@data)
names (k.de.day@data) <- c("metric","separable","sum.metric")

summary (k.de.day)

59

Object of class SpatialPixelsDataFrame
Coordinates:
min max
coords.x1 5.5 15.5
coords.x2 47.0 55.5
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0]
Number of points: 729
Grid attributes:
cellcentre.offset cellsize cells.dim

coords.x1l 6.0 0.25 37
coords.x2 47.5 0.25 30
Data attributes:

metric separable sum.metric
Min. :13.87 Min. :14.80 Min. :17.81

1st Qu.:18.15 1st Qu.:19.16 1st Qu.:20.75
Median :21.66 Median :22.15 Median :22.85
Mean :21.67 Mean 122.22 Mean :22.55
3rd Qu.:24.73 3rd Qu.:25.04 3rd Qu.:24.39
Max . :31.88 Max . :30.83 Max . :28.11

TASK 46 : Display the three kriging predictions side-by-side on the same
scale, with the day’s point observations overlaid as a post-plot. o

If the spplot method is called for a SpatialPixelsDataFrame with
more than one variable, unless otherwise specified (with the zcol ar-
gument) it displays a separate panel for each variable, on the same scale.
The sp.layout argument allows extra elements to be displayed on top
of the grid; here we ask for points and a polygon.

60

rr.day <- rr.t[,"2006-06-25"]
spplot(k.de.day, col.regions=bpy.colors(64),
sp.Tlayout=T1ist(
Tist("sp.points", rr.day, pch=1l, col="black",
cex=2+*rr.day$PM10/max(rr.day$PM10)),
Tist("sp.polygons",de.boundary, col="black"),
Tist("sp.text",coordinates(rr.day),
round(rr.day$PM10), pos=4,
col="black", cex=0.6)

separable sum.metric

30

Q30 : Which of the three variogram models best fits the selected day’s
point observations? Why? Jump to A30 e

61

Challenge: Repeat the kriging predictions and comparisons of this
section with other dates. Do you reach the same conclusions about
which spatio-temporal covariance structure is most appropriate for this
dataset?

Challenge: Compute the spatio-temporal variogram for just the selected
six-day period, and/or for a two-week period including the selected six
days. How different are the fitted variogram models from the models
fitted from the two-year dataset? Repeat the kriging prediction but using
this model derived from the “time-local” space-time empirical variogram.
How different are the predictions? Is it necessary to use models derived
from time-local space-time empirical variogram (a moving time window)
or can a single model be used? Does this vary by season?

12 Empirical orthogonal functions

Another way to model space-time structure are with Empirical Orthogo-
nal Functions (EOF). These are mathematically the same as PCA (Principal
Component Analysis). They are used to find the spatial or temporal pat-
terns of variability of a space-time variable, i.e., spatial patterns over
time and temporal patterns over space.

Note: PCA is a data reduction technique. It finds a new set of variables,
equal in number to the original set, where these so-called synthetic vari-
ables are uncorrelated. In addition, the first synthetic variable represents
as much of the common variation of the original variables as possible, the
second variable represents as much of the residual variation as possible,
and so forth. This technique thus reveals the structure of the data as un-
correlated components. The transformation itself and the synthetic vari-
ables produced by it can be interpreted by the analyst to understand the
underlying processes. In terms of mathematics, the vector space made
up of the original variables is projected onto another space such that
the projected variables are orthogonal, with descending variances. The
mathematics are well-explained in many texts, e.g., [4, 12].

We use the wind dataset (wind speeds at some stations in the Republic
of Ireland) provided with the gstat package and used as an example in
Pebesma [13]. Wind speed is reported as daily average wind speed in
knots!! at 12 stations in the Republic of Ireland. With so few stations,
it is impossible to compute spatial variograms, so we turn to another
method, namely EOF, to analyze them.

TASK 47 : Load the Irish wind data and examine its structure, convert
to a spatial object. o

Note: To see the objects added from the wind dataset, we save the
names of the objects in the workspace before and after loading, with the
1s “list objects” command. We then find the newly-defined objects with
the setdiff “set difference” function.

117 knot = 0.5418 m s°1

62

tmpl <- 1sQ

data("wind", package="gstat")
tmp2 <- 1sQ
setdiff(tmp2,tmpl)

[1] "tmpl" "wind" "wind.loc"

rm(tmpl, tmp2)
str(wind)

'data.frame': 6574 obs. of 15 variables:

$ year : int 61 61 61 61 61 61 61 61 61 61 ...
$month: int 1111111111...

$day :1int 12345678910 ...

$ RPT : num 15 14.7 18.5 10.6 13.3 ...

$ VAL : num 14.96 16.88 16.88 6.63 13.25 ...
$ ROS : num 13.2 10.8 12.3 11.8 11.4 ...

$ KIL : num 9.29 6.5 10.13 4.58 6.17 ...

$ SHA : num 13.96 12.62 11.17 4.54 10.71 ...
$ BIR : num 9.87 7.67 6.17 2.88 8.21 4.5 8.33 7.29 6.79 6.54 ...
$ DUB : num 13.67 11.5 11.25 8.63 11.92 ...

$ CLA : num 10.25 10.04 8.04 1.79 6.54 ...

$ MUL : num 10.83 9.79 8.5 5.83 10.92 ...

$ CLO : num 12.58 9.67 7.67 5.88 10.34 ...

$ BEL : num 18.5 17.54 12.75 5.46 12.92 ...

$ MAL : num 15 13.8 12.7 10.9 11.8 ...

wind[1l:6, 1:12]

year month day RPT VAL ROS KIL SHA BIR DUB CLA MUL

1 61 1 1 15.04 14.96 13.17 9.29 13.96 9.87 13.67 10.25 10.83
2 61 1 2 14.71 16.88 10.83 6.50 12.62 7.67 11.50 10.04 9.79
3 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 8.04 8.50
4 61 1 4 10.58 6.63 11.75 4.58 4.54 2.88 8.63 1.79 5.83
5 61 1 5 13.33 13.25 11.42 6.17 10.71 8.21 11.92 6.54 10.92
6 61 1 6 13.21 8.12 9.96 6.67 5.37 4.50 10.67 4.42 7.17

The wind table is in so-called space-wide format: each column (field in
the data frame) refers to one location, and the rows refer to a single time
period. This is thus a matrix where each cell is a space-time combination.
It can be summarized column-wise per location and row-wise per day.

For the first location the summary statistics are:
summary (wind[, "RPT"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.67 8.12 11.71 12.36 15.92 35.80

And for the first day:
wind[1,1:3]

year month day
1 61 1 1

summary (t(wind[1,4:151))

1
Min. : 9.29
1st Qu.:10.69
Median :13.42
Mean :13.10
3rd Qu.:14.98
Max . :18.50

63

TASK 48 : Examine the structure of the station locations object, and
convert to a spatial object. .

The cooérdinates are given by the wind.Toc object also loaded with the
data(wind) command. These must be converted from a formatted string
to numeric decimal degrees, using the as.character function to con-
vert a factor to a string, and then the char2dms function to interpret
this as decimal degrees. Finally, the coordinates and proj4string
commands are used to designate these as coordinates and specify the

coodrdinate system.
str(wind.loc)

'data.frame': 12 obs. of 5 variables:

$ Station : Factor w/ 12 Tevels "Belmullet","Birr",..: 12 1 311 92 87 6 4 .
$ Code : Factor w/ 12 levels "BEL","BIR","CLA",..: 12 1 3 11 102 8 7 6 4 .
$ Latitude : Factor w/ 12 levels "51d48'N","51d56'N",..: 2 11 951 6 8 12 4 10
$ Longitude: Factor w/ 12 Tevels "10d00'W","10d15'W",..: 2 1 12 11 10 9 8 7 6 5
$ MeanWind : num 5.48 6.75 4.32 5.38 6.36 3.65 4.38 8.03 3.25 4.48 ...

wind.Toc$y <- as.numeric(char2dms(as.character(wind.loc[["Latitude"]]1)))

wind.Toc$y[1]

[1] 51.93333

wind.Toc$x <- as.numeric(char2dms(as.character(wind.loc[["Longitude"]1])))

coordinates(wind.loc) <- ~x+y

proj4string(wind.loc) <- "+proj=longlat +datum=WGS84"

TASK 49 : Display a map of the stations in geographic context. o

Again the country boundaries are found in the worldHires dataset of
the mapdata package; here we just plot the whole database, which is
automatically restricted to the window defined in the initial pTot com-
mand.

plot(wind.loc, x1lim = ¢(-11,-5.4), ylim = c(51,55.5), axes=T, col="red",
cex.axis =.7)

map ("worldHires", add=TRUE, col = grey(.5))

grid(Q)

text(coordinates(wind.loc), pos=1, label=wind.Tloc$Station, cex=.7)

64

55°N

54°N

+
S Claremorris +

Mulli
'E/f‘;} ullingar Dutin
_ +
Birr
+
Kilkenny
Valéhti

12°w 10°wW 8°wW 6°W 4°W

53°N

52°N

Note: The map is geometrically correct because the projection has been
specified. At this latitude 1° latitude is only a bit less than 2° longitude.

TASK 50 : Make a space-time object with both locations and wind
speeds. o

The constructor stConstruct creates objects of various ST classes from
long or wide tables. Here we have a time-wide table. The space ar-
gument gives the set of columns that contain the spatial variable, here
columns 4 through 15. The time argument gives the time stamp of each
observation. The SpatialObj argument gives the name of the time-wide
table.

The station names in the time-wide table must be matched with those
in the station location dataframe, using the match function. The time is
given in the object only as two-digit years, so 1900 must be added.
stations <- 4:15

names (wind[stations])

[1] "RPT" "VAL" "ROS" "KIL" "SHA" "BIR" "DUB" "CLA" "MUL" "CLO" "BEL"
[12] "MAL"

as.character(wind.loc$Code)

[1] "VAL" "BEL" "CLA" "SHA" "RPT" "BIR" "MUL" "MAL" "KIL" "CLO" "DUB"
[12] "ROS"

wind.Toc <- wind.loc[match(names(wind[stations]),

wind.Toc$Code),]
row.names(wind.loc) <- wind.loc$Station
wind$time <- ISOdate(wind$year+1900,

65

wind$month, wind$day, 0)
st.space <- list(values <- names(wind)[stations])
wind.st <- stConstruct(wind[stations],
space=st.space, time=wind$time,
SpatialObj=wind.loc)

This is a long time series, so to save computation time we restrict to the
first two years.

wind.st <- wind.st[,1:730]
summary (wind.st)

Object of class STFDF
with Dimensions (s, t, attr): (12, 730, 1)
[[Spatial:]]
Object of class SpatialPointsDataFrame
Coordinates:
min max
x -10.25 -6.25000
y 51.80 55.36667
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0]
Number of points: 12
Data attributes:

Station Code Latitude Longitude
Belmullet :1 BEL :1 51d48'N :1 10d0o0'w 11
Birr :1 BIR 1 51d56'N 1 10d15'w 11
Claremorris:1 CLA i1 52d16'56.791"N:1 6d15'W i1
Clones 1 CLO :1 52d40'N :1 6d21'25.056"W:1
Dubl1in :1 DUB 11 52d42'N i1 7d14'w H
KiTlkenny :1 KIL 1 53d05'N :1 7d16'w gl
(Other) 16 (Other):6 (Other) 16 (Other) 16

MeanWind
Min. :3.250
1st Qu.:4.365
Median :5.215
Mean :5.261
3rd Qu.:6.090
Max. 8.030
[[Temporal:]]

Index timeIndex
Min. :1961-01-01 00:00:00 Min. : 1.0
1st Qu.:1961-07-02 06:00:00 1st Qu.:183.2
Median :1961-12-31 12:00:00 Median :365.5
Mean :1961-12-31 12:00:00 Mean :365.5
3rd Qu.:1962-07-01 18:00:00 3rd Qu.:547.8
Max. :1962-12-31 00:00:00 Max. :730.0
[[Data attributes:]]

values
Min. : 0.00

1st Qu.: 6.34
Median : 9.59
Mean :10.34
3rd Qu.:13.33
Max. :37.63

dim(wind.st)

space time variables
12 730 1

TAskK 51 : Display a space-time 2D plot of the wind speed per station. e

66

The stplot function which was used above (§11) to show the results
of spatio-temporal kriging can also show the space-time relations on a
single plot if called with argument mode="xt" with the spatial unit (here,
the station) on the x-axis, time on the y-axis, and the attribute value
shown as a colour ramp with a legend.

Note: The scales optional argument to the xyplot method of the
Tattice package is a list determining how the x- and y-axes (tick marks
and labels) are drawn; here we specify rotation of the labels on the x-axis,
because otherwise they would overlap.

stplot(wind.st, mode = "xt", scales = Tist(x=list(rot = 45)),
xlab = NULL, col.regions=bpy.colors(64),
main="Average wind speed (knots)")

Average wind speed (knots)

- 35
- 30
1962-07 -
- 25
Q
£ 1962-01
1961-07 -

N IS T N R SR S
QO\ \Q‘Q\' 0‘_9\’0' . \{90(\ 'b’(\ﬂ\ 2 O\‘\Q @0\\ \\\(\Q O ((\\§\ Q\Q/’b.
7 W & & ¢ PO AR

Q31 : Which station has the lowest wind speed on most days? Which is
the most consistent? Which is the most variable? Does there appear to
be temporal dependence at most stations? Is it the same at all stations?

Jump to A31 e

TASK 52 : Compute the spatial and temporal EOF. o

67

The eof function computes the EOF, using the standard prncmp PCA
function. The EOF are computed in either the spatial or temporal di-
mension, depending on the how argument. By default, it computes un-
standardized PCs (i.e., using covariances instead of correlations), which
seems correct since the predictors are in the same units of measure.

Note: In many applications standardized PCA is used, because the vari-
ables are on different measurement scale.

The optional returnEOF argument specifies what is returned; if TRUE
(the default), the eigenvectors (EOFs) are returned for each station as ob-
jects of class xts or one of the Spatial classes; if FALSE, an object of
class prcomp “principal components result” as returned by the prcomp
“compute principal components” function is returned; this can be pro-
cessed in the usual way for PCA. For example, screeplots (§12.2) and
biplots (§12.3) can be produced and interpreted.

The spatial EOF use the time-series to characterize stations; this is a
matrix with one row for each time (here, day) and one column for each
station. The temporal EOF use the stations to characterize the time se-
ries: this is a matrix with one row for each station and one column for
each observation time (here, day).

12.1 Computing EOF

First, the PC scores themselves, for spatial EOF:

wind.eof.1l <- eof(wind.st, how="spatial")
str(wind.eof.1)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 12 obs. of 12 variables:

..$ EOF1 : num [1:12] -0.328 -0.268 -0.248 -0.237 -0.299 ...
..$ EOF2 : num [1:12] -0.437 -0.2402 -0.5292 -0.1518 -0.0689 ...
..$ EOF3 : num [1:12] 0.1028 0.465 -0.4128 -0.0591 0.2317 ...
..$ EOF4 : num [1:12] -0.2038 0.0793 0.6178 -0.1114 -0.3543 ...
..$ EOF5 : num [1:12] -0.50741 -0.21311 0.1473 0.00966 0.10637 ...
..$ EOF6 : num [1:12] 0.143 0.249 -0.146 -0.272 -0.188 ...
..$ EOF7 : num [1:12] -0.57081 0.54492 0.12815 -0.00239 0.30717 ...
..$ EOF8 : num [1:12] 0.172 -0.423 0.134 -0.324 0.504 ...
..$ EOF9 : num [1:12] -0.02751 -0.22467 0.00571 0.47679 0.11222 ...
..$ EOF10: num [1:12] 0.0382 0.0811 -0.0815 0.3328 -0.4195 ...
..$ EOF11: num [1:12] -0.1144 -0.065 -0.0681 0.5851 0.2567 ...

.. ..%$ EOF12: num [1:12] 0.0232 -0.0545 -0.1319 0.2134 -0.2769 ...

..@ coords.nrs : num(0)

..@ coords : num [1:12, 1:2] -8.25 -10.25 -6.36 -7.27 -8.92 ...
..- attr(x, "dimnames")=List of 2

..$: chr [1:12] "Roche.s.Point" "Valentia" "Roslare" "Kilkenny" ...
e vo 2.% : chr [1:2] "x" "y"
..@ bbox : hum [1:2, 1:2] -10.25 51.8 -6.25 55.37
..- attr(x, "dimnames")=List of 2
..$: chr [1:2] "x" "y"
ve . ..$ 1 chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
..@ projargs: chr "+proj=longlat +datum=WGS84 +el1Tps=WCS84 +towgs84=0,0,0"

The spatial EOF is a SpatialPointsDataFrame object, with one row per
PC, the fields being the principal component scores for each station.

Second, the PC scores for the temporal EOF:

68

wind.eof.2 <- eof(wind.st, how="temporal")
str(wind.eof.2) # returns xts

An 'xts' object on 1961-01-01/1962-12-31 containing:

Data: num [1:730, 1:12] -0.0369 -0.0417 -0.0317 -0.0312 -0.0275 ...
- attr(x, "dimnames")=List of 2

..$: NULL

..$: chr [1:12] "EOF1" "EOF2" "EOF3" "EOF4" ...

Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT

xts Attributes:
NULL

summary(wind.eof.2[,1:2])

Index EOF1 EOF2
Min. :1961-01-01 00:00:00 Min. :-0.09914 Min. :-0.125571
Ist Qu.:1961-07-02 06:00:00 1st Qu.:-0.04397 1st Qu.:-0.031517
Median :1961-12-31 12:00:00 Median :-0.03270 Median :-0.006705

Mean :1961-12-31 12:00:00 Mean :-0.03388 Mean :-0.007155
3rd Qu.:1962-07-01 18:00:00 3rd Qu.:-0.02323 3rd Qu.: 0.018004
Max. :1962-12-31 00:00:00 Max. : 0.01234 Max. : 0.086714

The temporal EOF is an xts “extended time series” object, indexed by
the time series, with the twelve PC scores for each time as the columns.

Specifying returnEOFs to be FALSE causes a prcomp object to be re-
turned.

eof.sp <- eof(wind.st, how="spatial"”, returnEOFs=FALSE)
eof.t <- eof(wind.st, how="temporal", returnEOFs=FALSE)

12.2 Interpreting EOF: the scree plot

TASK 53 : Print and graphically represent the cumulative proportion of
variance explained by each PC. .

The proportion of the total variance explained by each PC, and the cumu-
lative proportion explained, is shown in the summary of the prcomp ob-
ject, and can be graphically represented by a so-called scree plot, which
is the default for the plot method applied to objects of this class. The
spatial PCA has 12 PCs, one for each station; the temporal PCA also has
only 12 PCs.

summary (eof.sp)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 15.3443 4.86305 3.8810 2.93129 2.47623 1.94827
Proportion of Variance 0.7785 0.07819 0.0498 0.02841 0.02027 0.01255
CumuTlative Proportion 0.7785 0.85666 0.9065 0.93487 0.95514 0.96769

PC7 PC8 PC9 PC10 PC11 PC12
Standard deviation 1.68166 1.39482 1.32008 1.12165 1.07328 0.9198
Proportion of Variance 0.00935 0.00643 0.00576 0.00416 0.00381 0.0028
CumuTlative Proportion 0.97704 0.98347 0.98923 0.99339 0.99720 1.0000

summary (eof. t)

Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 63.8558 38.5457 31.5853 23.29147 18.00348
Proportion of Variance 0.4999 0.1822 0.1223 0.06651 0.03974
Cumulative Proportion 0.4999 0.6821 0.8044 0.87091 0.91065

69

PCé6 PC7 PC8 PC9 PC10
Standard deviation 14.02701 13.24553 10.75123 9.94581 8.75978
Proportion of Variance 0.02412 0.02151 0.01417 0.01213 0.00941
Cumulative Proportion 0.93477 0.95628 0.97045 0.98258 0.99199
PC11 PC12
Standard deviation 8.08425 2.716e-14
Proportion of Variance 0.00801 0.000e+00
Cumulative Proportion 1.00000 1.000e+00

plot(eof.sp, main="EOF, space")
plot(eof.t, main="EOF, time")

EOF, space EOF, time

200
|
3000 4000
1

150
I

Variances
Variances
2000
1

100
I

50
1000
1

° J 7DI:||:|:I|:|:“:..:.=. o J HDDDEEZ::

Q32 : Which EOF has the largest variances? Why? Jump to A32 e

Q33 : In which of the EOF is most of the variance explained by the first
component? In which does it require more components to explain the
variance? Jump to A33 e

12.3 Interpreting EOF: the biplot

Principal components can be graphically represented by so-called bi-
plots, which show the PC scores of any two PCs (by default the first two,
i.e., the two with the most explanation of variance) of observations, along
with vectors showing how correlated each predictor variable is with each
of the two PCs. We specify the pc.biplot argument to be TRUE, to pro-
duce the biplot as proposed by Gabriel [5], which scales the scores of
the observations and rotations by the components’ standard deviations
(eigenvalues).

First the spatial EOF, where the time-series was used to summarize be-
haviour over space:

70

biplot(eof.sp, pc.biplot=T, main="EOF, space", cex=c(0.3, 0.7))

PC2

EOF, space
-6 -4 -2 0 2
| | | | |

R —
1961-067g37%3295
1961-07-26
1962-02-15
1961-05-08
e

Malin.Head TR e 0o
1062-02-16 1952—05—1@952“5&9%—733%

961-06-18
1961-03-25

1962-0fg " 3 ,zgesz{mﬂs
Belmullet _3961505-07 1961138 2

—] 1962-12-15
PP, 1962-1
1962-12-31

C| S,
Clanosin
— Dublin 19y<

Shannon jeoeek
1962-02-12 K| | ke nn

1961-09-16

Va i 19]

1961-0;
10685730 1962-04-

i 1961-02- =1o61-12
Roche.s.Point e a2 09-10
_07-71961-
1061-12-13096010Fe96207- 24" 6
Resstaresose-oi-os” -2 10020461
—] 1962-01-11 o dogpdE 19862122229 1961-11-15
1961-1060911-11
1961-121G¥61-02-02 1961-04-13
1962-04-02 1961-01-31 " 1962-07-26 1962-12-28

1962-04-08 1962-09-20

1961-11-30
1961-12-30

— 1961-11-13

1961-11-14

1962-03-07

PC1

In a biplot, the first set of points (shown in black) are the observations,
and the second set (shown in red) are the variables. Here there are only
twelve variables, i.e., the spatial locations, but 730 observations, i.e., the

dates.

Biplots can be interpreted in several ways:

1. The orientation (direction) of the vector, with respect to the PC
space. The more a vector, which represents an original variable, is
parallel to a PC axis (PC1 at the bottom, PC2 at left), the more it
contributes to that PC.

2. The length in the space defined by the displayed PCs; the longer
the vector, the more variability of this variable is represented by
the two displayed PCs.

3. The angles between vectors of different variables show their corre-
lation in the space spanned by the two displayed PC’s: small angles
represent high positive correlation, right angles represent lack of

correlation, opposite angles represent high negative correlation.

The scaled values of the eigenvectors are shown as the top (PC1)

71

and right (PC2) axes.

Because of the scaling applied, the inner (vector) product between
two variables approximates their covariance (if standardized, their
correlation). Thus two vectors (here, representing dates) that are
almost parallel will have a very high covariance, and two orthogonal
vectors will have no covariance.

4. The location of observations in the biplot space, defined by their
scores scaled by the standard deviation of each PC, i.e., its eigen-
value: this shows the relation of observations to each other and
which observations are unusual. These values are shown on the
bottom (PC1) and left (PC2) axes.

Because of the scaling applied, the distances between observations
plotted in this space approximate the Mahalanobis distance be-
tween them; this is a common multivariate measure of similarity
between observations.

Here we see the 12 stations all contributing to PC1, which represents
the overall windspeed over all days; thus on average all of Ireland has
a similar wind speed on a given day. PC2 differentiates Malin Head and
Belmullet (the two stations on the NW coast, where the Atlantic storms
first reach Ireland) from Roches’ Point and Roslare form another group;
these are (the two stations on the SE coast); the other stations hardly
contribute to PC2. PC1 is easily interpreted as overall windspeed (higher
at negative values of PC1). PC2 may be interpreted as consistency of
wind speed: more consistent in the SE (negative values of PC2).

The PC scores of the individual dates form a dense cloud. To the left
(negative values of PC1) are days with higher windspeed; note the denser
cloud, but closer to the origin, for lower windspeed days. Some outliers
do not fit the pattern. For example 1962-03-07 had both high windspeed
and strong trend.

TAsk 54 : Display the wind speeds over Ireland for 1962-03-07 as a
postplot, with text showing the speed. .
tmp <- wind.st[,"1962-03-7"]
plot(wind.loc, xTim = c(-11, -5.4), ylim = c(51, 55.5), axes = T, col = "red",
main="Wind speed, 07-March-1962",
sub="knots")
map("worldHires", add = TRUE, col = grey(0.5))
text(coordinates(wind.loc), pos = 1, label = wind.loc$Station, cex = 0.7)
grid()
points(coordinates(wind.Toc), cex = 3xtmp$values/max(tmp$values))
text(coordinates(wind.loc), pos = 4, label=round(tmp$values), cex = 0.7)

72

Wind speed, 07-March-1962

N

55°N

54°N

Claremorris & 19

Mullingar
& 24

Birr

53°N

32 & 21
annon Kilkenny

52°N

Val

51°N
|
—

12°wW 10°W 8°W 6°W 4°W

knots

Notice the much stronger winds in the S and E, quite a contrast the usual
pattern with Atlantic winds coming from the NW.

Contrast this with the most extreme contrasting date, in the upper-right
of the plot, 1962-10-17.

TAsK 55 : Display the wind speeds over Ireland for 1962-10-17 as a
postplot, with text showing the speed. .
tmp <- wind.st[,"1962-10-17"]
plot(wind.loc, x1im = c¢(-11, -5.4), ylim = c(51, 55.5), axes = T, col = "red",
main="Wind speed, 17-November-1962",
sub="knots")
map("worldHires", add = TRUE, col = grey(0.5))
text(coordinates(wind.loc), pos = 1, label = wind.loc$Station, cex = 0.7)
grid(Q)
points(coordinates(wind.Toc), cex = 3xtmp$values/max(tmp$values))
text(coordinates(wind.loc), pos = 4, label=round(tmp$values), cex = 0.7)

73

Wind speed, 17-November-1962

55°N

54°N

&
S Claremorris <+ 4

Mullingar _5
Dublin
+2
n Birr
3 +1
Kilkenny
Valéhti

12°wW 10°W 8°W 6°W 4°W

53°N

52°N

knots

Here the overall windspeed is much lower, and the contrast is from high
in the N to light in the S.

Second, the temporal EOF, where the 730 time periods are summarized
by their behaviour at the twelve stations.
biplot(eof.t, pc.biplot=T, main="EOF, time", cex=c(0.8, 0.2), arrow.len=0.05, col=c("blue","r

74

13 Answers

EOF, time

-6 -4 -2 0 2 4
| | | | | |
o _|
—
- <
o _VIaIin Head
—i
o Clonelaréfiigar - o~
S Birr
S] Kilkeni__
S o
I3V
O
o W
S -
' - o
]
5 -
I
. <
L{'! I
I Roche's Point
o e}
N Roslare !

I I I I I I I I
-20 -15 -10 -05 00 05 10 15

PC1

Challenge: View the biplots for PC3 and PC4 (hint:see optional argu-
ment choices to biplot.princomp) for both space and time EOF, and
attempt to interpret their meaning.

A1 : Object DE_NUTS1 is of class SpatialPolygonsDataFrame; these are poly-
gons representing statistical district boundaries. Object rural is of class
STFDF. Return to Q1 e

A2 : The PM10 attributes in the data frame has 306810 observations; this is
the product of the number of points 70 and the number of times 4383. Thus
this is a full space-time grid - each location is measured at each time, although
some observations may be missing (NA). Return to Q2

A3 : This is shown in the proj4string slot of the SpatialPoints object:
CRS 4326 in the EPSG database; this is WGS84 geographic codrdinates. Return

75

toQ3 e

A4 :

1. No long-term trend;
2. Perhaps an annual cycle, with more PM10 in the summer months;

3. Several spikes, especially an extreme value near 01-Jan-2003.

Return to Q4

A5 : 17 stations were removed (see the dimensions of the two multiple time
series). Return to Q5

AG6 : There are three dimensions: (1) space, (2) time, (3) attributes at a full grid
of space and time.

The spatial information is of class SpatialPoints and just gives the location
and CRS of the observations.

The temporal information is an index of class POSIXct, giving the date of each
observation.

The attributes are what is measured at each observation, here PM10 concen-
tration, one observation for each time at each station; here many are missing,
i.e., no observation for the given date at the given station. Return to Q6

A7 : The temporal autocorrelation is shown for 30 days; by definition it is
1 at lag 0. It decreases to effectively zero after ten days; see the confidence
intervals around p = 0 shown by the blue dashed lines. Even after one day the
autocorrelation is only about +0.65; this shows that air pollution at this station
is not persistent. Return to Q7 e

A8 : The partial autocorrelation is about +0.65 at a lag of +1 day; this is
the same as the autocorrelation for lag +1. For longer lags it is not provable
different from 0, i.e., all of the autocorrelation can be explained by the single
previous days values. This implies that the process has a persistence of one
day with a fairly strong one-day correlation, which manifests itself in apparent
autocorrelations at longer lags. Return to Q8 e

A9 : The off-diagonals of the graph matrix show the cross-correlations. We
consider the upper-right off-diagonal: the forward cross-correlation, i.e., time
lag is from the first to the second-listed station, so the second station is later.

The longest lag with significant cross-correlation is between stations 063 and
065 at about 11 days; these also have a significant positive cross-correlation
around lags 14-18. These stations also have the largest lag-0 (instantaneous)
cross-correlation, about +0.81.

Stations 068 and 081 also have strong lag-0 cross-correlation, with significant
positive cross-correlation through day 15.

76

The weakest cross-correlation is between stations 081 and 064; lag-O cross-
correlation only about 0.48 and significant cross-correlation only till lag 6. Re-
turn to Q9 e

A10 : The lower-left off-diagonal is the backwards cross-correlation. These
can differ from reverse of the corresponding forward cross-correlation. For
example, stations 081 and 063 have a forward significant cross-correlation till
lag 10 but backward only until lag -4. That is, knowing the PM10 on a given day
at station 081 still gives information about the PM10 at station 063 10 days in
the future; but only 4 days in the past. Station 081 (Bocholt) is directly to the
west of station 063; the strong forward temporal cross-correlation is likely due
to the prevailing wind direction. Return to Q10 e

A1l : Maximum: Stations 063 and 064: 228 km apart.

Minimum: Stations 063 and 068 are only 63 km apart. The strongest cross-
correlation does not seem to be between the pair with minimum separation.
The cross-correlation between the furthest pair is not the weakest, but is defi-
nitely weaker than that for the closest pair. Return to Q11

A12 : The distribution is strongly right-skewed. Almost all the values are
below 50 mg kgl. The single maximum is over twice the next-highest value.
Return to Q12 »

Al3: The maximum PMI10 was 269.079, observed at station DEMV017 (in
Mecklenburg-Vorpommern, northeastern Germany) on 2009-03-22. Return to
Q13 e

A14 : This value seems unlikely, although physically possible, e.g., from a
forest fire. The previous day is moderately high (upward trend) and is higher
than other peaks in the same time period. However, the following day has
again very low PM10. Perhaps PM10 from a fire was then washed out of the air
by a rainstorm? Return to Q14

A15 : The neighbouring points all have much lower values and are fairly
consistent; this value is quite unlikely. Return to Q15 «

A16 : There is strong spatial correlation, e.g., clusters low values in the NE,
high values in the centre and SW. Return to Q16 e

A17 : The variogram is fairly consistent, considering that is has only a few
stations - note the numbers of point-pairs in each variogram bin. It shows a
clear structure and a good model: no nugget, increase in semivariance consis-
tent with an exponential model to an effective sill at about 57 (mg kg'1)? at a

77

computed range of about 434 km. Return to Q17

A18 : The highest kriging prediction variances are in the SE (Bavaria, away
from observation stations). The highest coefficients of variation, however, are
found in the NE and centre E, where the predictions are low relative to the
uncertainty. Return to Q18 «

A19 : The empirical variogram is well-structured and shows a clear depen-
dence to about 319 km. An exponential model seems appropriate. The nugget
is zero, this is consistent with air mixing at short range, assuming good mea-
surement technique. The effective sill is about 60 (mg kg1)? . This model is
not much different than the single-date model of the previous section, except
that the fitted range is only about half of that for the single-date variogram.
Although the model forms, sills and nuggets are similar, the discrepancy in
ranges brings into question the assumption of similar structure on all dates.

Return to Q19 e

AZ20: The two maps are very similar; no PM10 prediction differs by more than
2.5 ug m3, which is an order of magnitude smaller than health limits. Thus
using a temporally-lumped variogram model to interpolate on one day seems
justified in this case. The higher predictions by the lumped model are in the
E and NE, this is because of the reduced range of that model, so the relatively
higher measurements in that region have a bit more weight. Return to Q20 e

A21 : The magnitude of the prediction standard deviations is similar, but
the Iumped model in this case has smaller areas of low standard deviations
near observation points. This is because of the longer range of the single-day
variogram. Return to Q21 e

A22: At 143 km average separation and day 5, the semivariance
y = 88.24 (mgkg1)?. Return to Q22

A23: 1. The averaged spatial dependence at lag 0 (same day) is well-structured,
with a low nugget and increasing to about 60 (mg kg1)2.

2. As the time lags increase, (1) the nugget increases, (2) the total sill increases,
(3) the partial sill (total sill less nugget) however decreases - there is less spatial
structure. By 10 days lag there is almost no spatial structure.

3. There is an interesting anomaly at the 20 km separation: at all lags after the
first (i.e., from two days onward) there is better correlation at 20 km than at
0 km. Return to Q23 e

A24 : The model has a nugget of about 7 (mg kg1)?, a partial sill of about
98 (mg kg1)? at an effective range of about 921 km.

The anisotropy ratio is 160.2, i.e., one day’s lag is equivalent to about 160 km
spatial separation. This is well above the estimated starting value, 62.8. Return

78

toQ24 «

A25: The model fits the empirical variogram at lag O fairly well; it smooths the
fluctuations inherent in the empirical variogram from few stations. However
it fits quite poorly at longer time lags - the model shows a smoother time
decay with space than evidenced by the empirical variogram. We conclude that
time does not just act as another dimension with the same structure as space,
differing only in units. Return to Q25 e

AZ26 : The separable model fits much better. We see the spatial structure for
lags up to about five days, with the increasing nugget, thus decreasing amount
of spatial dependence, similarly to the empirical variogram. Neither model
deals with the short-range anomaly (non-monotonic) from lag 2 on. Neither
model reproduces the anomalies around 150 and 250 km. Return to Q26 e

A27 : The sum-metric model better represents the decay in spatial depen-
dence with increasing time lag. Return to Q27

A28 : The sum-metric model has the best fit, followed by the separable model;
the metric model has the worst fit. Thus the sum-metric covariance model
seems to best represent the spatio-temporal process. Return to Q28

A29 : The metric and separable models only differ by a few ug m3, whereas
the sum-metric model differs from both by a substantial amount, higher by up
to 10 ug m3 and lower by up to 8 pug m3. Large differences are seen especially
in N Germany on 25-June-2006. The sum-metric model allows for interaction
between the spatial and temporal dependence. Return to Q29 e

A30: On this date both the separable and metric models better capture the
very high values in the NW. The sum-metric model best identifies the anomaly
near Frankfurt in the centre-SW. It has smaller patches of high and low values
than the other two models, which have longer ranges. Return to Q30 e

A31 : Kilkenny has the lowest speeds on almost all days; it also seems the
most consistent. Main Head and Roche’s Point appear to be the most variable.
There is strong temporal dependence, shown by same colours vertically, for
several days to a week at most stations, but this seems variable among stations.

Return to Q31 e

A32 : The variances are much larger in PC’s computed over time than for
those computed over space, for this two-year subset. That is, there is much
more variability over time, summarized in the 12 stations, than in space, sum-
marized over the long time series. Return to Q32

79

A33 : In the temporal EOF, the screeplot shows that the first PC has most
of the variance, almost 80%. In the spatial EOF, stations are fairly distinct,
as shown by the screeplot and cumulative proportion of variance. The 12
stations’s behaviour is summarized at the 95% level by the first seven PCs.
Only five PCs are needed to account for 95% of the variation among days over
the whole time period. Return to Q33 e

80

A Creating space-time objects

In this section we show how to create space-time objects of class STFDF,
that can then be analyzed as in the previous sections.

TASK 56 : Load tabular data representing a space-time object. o

An example tabular dataset has been created, see §B; this is the daily
depth to water table of several sites in the US state of North Carolina in
2013.

Toad("./ds/NCwater/example.RData")
str(ds.nc)

'data.frame': 17113 obs. of 7 variables:

$ site: Factor w/ 48 levels "335334078352106",..: 11 11111111...
$ date: POSIX1t, format: "2012-12-28" ...

$ mean: num 5.43 5.14 4.94 4.9 4.86 4.84 4.83 4.84 4.84 4.82 ...

$ Tong: num -78.6 -78.6 -78.6 -78.6 -78.6 ...

$ lat : num 33.9 33.9 33.9 33.9 33.9 ...

$ alt : num 47.3 47.3 47.3 47.3 47.3 ...

$z D hum 41.9 42.1 42.3 42.4 42.4 ...

This dataset is a so-called long table: each entry has both its coérdinates
(spatial reference) and its time stamp, here a date in POSIX format, as
well as attributes measured at each location at each time, here mean
water depth below land surface mean, land surface elevation alt, and
water surface elevation above sea level z. Further, each site is identified
with a code in field site.

TASK 57 : Convert to a spacetime object. o

The stConstruct function creates this spacetime objects from various
formats, including a long table. We need to inform the function which
fields in the table are the cotrdinates and attributes and which field con-
tains the time stamps.

Note: The stConstruct function takes the coordinate fields in their or-
der in the source dataframe, not in their order in the argument list; there-
fore they must be re-ordered in the dataframe before using the function.

stds <- stConstruct(ds.nc,
space=c("long","lat"),
time="date",
interval=FALSE)

proj4string(stds) <- CRS("+init=EPSG:4269")
str(stds)

Formal class 'STIDF' [package "spacetime"] with 4 slots
..@ data :'data.frame': 17113 obs. of 4 variables:

..$ site: Factor w/ 48 Tlevels "335334078352106",..: 123 4567 8 9 10 ...

..$ mean: num [1:17113] 5.43 13.06 9.03 43.68 23.48 ...
..$ alt : num [1:17113] 47.3 28.1 28.1 28.1 28.3 ...

. ..8z : num [1:17113] 41.85 15 19.03 -15.6 4.78 ...
..@ sp :Formal class 'SpatialPoints' [package "sp"] with 3 slots
..@ coords : num [1:17113, 1:2] -78.6 -78.2 -78.2 -78 -78 ...

..—- attr(*, "dimnames")=List of 2

81

..$: chr [1:17113] "2"™ "369" "736" "1103" ...
e «. ..%$: chr [1:2] "long" "lat"
..@ bbox : num [1:2, 1:2] -83.9 33.9 -76.3 36.3
..- attr(x, "dimnames")=List of 2
..$: chr [1:2] "long" "lat"
e vo .8 2 chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 sTot
v+ «+ «2@ projargs: chr "+init=EPSG:4269 +proj=longlat +datum=NAD83 +no_defs +elTps=G
..@ time :An 'xts' object on 2012-12-28/2013-12-27 containing:
Data: int [1:17113, 1] 1 366 731 1096 1461 1824 2189 2554 2882 3247 ...
- attr(x, "dimnames")=List of 2
..$: NULL
..$: chr "timeIndex"
Indexed by objects of class: [POSIXTt,POSIXt] TZ: UTC
xts Attributes:
NULL
..@ endTime: POSIXct[1:17113], format: "2012-12-28" ...

The object has slots for the attributes (@data), spatial reference (@sp),
time reference (@time), and ending time of the series (@endTime).

However, this is of class STIDF, “unstructured spatio-temporal data”,
with full space/time grid, where each entry has both a location and a
timestamp. Thus the spatial coordinates are repeated for each time
point. In this structure the sp and time slots need to have the same
number of records, and are simply matched by order to identify the lo-
cation and time of a particular event. The data slot has the same number
of records and is matched accordingly. There is no need for repeat ob-
servations at the same location, nor for a single observation at a point at
a single time.

If the grid is regular, the spacetime data have recurrent observations for
fixed spatial entities, and each spatial entity (here, points) has the same
number of observations. In this case, the data structure should be con-
verted to a SpatialPoints object with just the unique cootrdinates, i.e.,
a full grid but with only the unique values for the space and time com-
ponents, linked through their regular structure, as follows. The sp and
time slots typically have different number of records. The assumption
every spatial record has a time series of data of length nrow(time), and
that the STFDF slot has Tength(sp) * nrow(time) records, space cy-
cling fastest. So if the STIDF full grid is set up this way, the conversion
to STFDF will be correct.

stds <- as(stds, "STFDF")
class(stds)

[1] "STFDF"
attr(, "package™)
[1] "spacetime"

str(stds)

Formal class 'STFDF' [package "spacetime"] with 4 slots
..@ data :'data.frame': 14965 obs. of 4 variables:
..$ site: Factor w/ 48 Tlevels "335334078352106",..: 1 2 36 7 8 9 10 11 12 ...
..$ mean: num [1:14965] 5.43 13.06 9.03 3.12 50.03 ...
..$ alt : num [1:14965] 47.3 28.1 28.1 28 54.5 ...

. ..8 2 : num [1:14965] 41.85 15 19.03 24.88 4.51 ..
..@ sp :Formal class 'SpatialPoints' [package "sp"] with 3 slots
..@ coords : num [1:41, 1:2] -78.6 -78.2 -78.2 -78 -78.1 ...

82

..- attr(x, "dimnames")=List of 2
..$: chr [1:41] "2" "369" "736" "1103" ...
e . ..$: chr [1:2] "long" "lat"
..@ bbox : num [1:2, 1:2] -83.9 33.9 -76.3 36.3
..- attr(x, "dimnames")=List of 2
..$: chr [1:2] "long" "Tlat"
e v 2.8 chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 sTot
e «+ ««@ projargs: chr "+init=EPSG:4269 +proj=longlat +datum=NAD83 +no_defs +ellps=GC
..@ time :An 'xts' object on 2012-12-28/2013-12-27 containing:
Data: int [1:365, 1] 1234567 89 10 ...
- attr(x, "dimnames")=List of 2
..$: NULL
..$: chr "timeIndex"
Indexed by objects of class: [POSIXT1t,POSIXt] TZ: UTC
xts Attributes:
NULL
..@ endTime: POSIXct[1:365], format: "2012-12-29" ...

summary (stds)

Object of class STFDF
with Dimensions (s, t, attr): (41, 365, 4)
[[Spatial:]]
Object of class SpatialPoints
Coordinates:
min max
long -83.91389 -76.27528
Jat 33.89278 36.30833
Is projected: FALSE
proj4string :
[+init=EPSG:4269 +proj=longlat +datum=NAD83 +no_defs
+e11ps=GRS80 +towgs84=0,0,0]
Number of points: 41
[[Temporal:]]
Index timeIndex
Min. :2012-12-28 Min. 3 i
1st Qu.:2013-03-29 1st Qu.: 92
Median :2013-06-28 Median :183
Mean :2013-06-28 Mean 1183
3rd Qu.:2013-09-27 3rd Qu.:274

Max. :2013-12-27 Max . 1365
[[Data attributes:]]
site mean alt

335334078352106: 365 Min. : -0.400 Min. : 12.0
335629078115406: 365 1st Qu.: 7.218 1st Qu.: 85.0
335629078115407: 365 Median : 17.795 Median : 555.0
335631078003606: 365 Mean 1 24.428 Mean 1 694.9
335849078054301: 365 3rd Qu.: 35.233 3rd Qu.:1009.0
(Other) 112735 Max . :101.120 Max. :3148.3
NA's ;405 NA's 1493 NA's 1405

z
Min. 3 4.19

1st Qu.: 71.92
Median : 467.82

Mean : 670.38
3rd Qu.: 990.92
Max. :3146.35
NA's 1493

For future use, this is saved as an R data file:
save(stds, file="./ds/NCwater/NCwater.RData")

83

B Creating space-time long format data frames from online data sources

The long table imported in §A was prepared from data provided by the
United States Geological Survey (USGS). It is typical of the vast amount
of freely-available data now available for download. It also presents the
typical problems of how to find information, how to combine it, and
how to format it. This appendix shows the details of such a procedure
for the example long table; it should give some ideas on how to do this
in general, for the USGS and other data providers.

The USGS has a wealth of groundwater (and other) data, freely-available
for search and download'?. These are rich sources of space-time data;
however, preparing them for analysis in R (or other programs) is te-
dious and requires careful attention. In this appendix I show how I ac-
cessed the USGS groundwater site, selected dates, downloaded it, and
re-formatted into an R data frame with the observation date, station co-
ordinates, an the groundwater level for each day at each station.

I selected the state of North Carolina, Water Level/Flow Parameter “Depth
to water level, ft below land surface”, and the previous 365 days from 28-
December-2013, downloaded as tab-separated data with dates in YYYY-
MM-DD format. The automatically-created file was named dv, which I
modified to dv.txt. The following R code shows how I processed it to
obtain the R dataset used in this tutorial.

There are two files: the water levels and the site information. The water
levels file uses the site and date as key; the site is labelled by approximate
geographic coordinates and a sequence number. The exact codrdinates
are found in the site information file. But to download this one must
prepare a text file of the sites of interest.

The water levels file looks like!>:

12http://waterdata.usgs.gov/
13 Some comment lines have been removed for clarity.

84

http://waterdata.usgs.gov/

Data for the following 92 site(s) are contained in this file
USGS 335334078352102 BR-116 CALABASH RS NR CALABASH, NC (BLACK CREEK)
USGS 335334078352106 BR-123 CALABASH RS NR CALABASH, NC (SURFICIAL)

Data provided for site 335334078352106

DD parameter statistic Description

01 72019 00001 Depth to water level, feet below land surface (Maximum)
01 72019 00002 Depth to water level, feet below land surface (Minimum)
01 72019 00003 Depth to water level, feet below Tand surface (Mean)

Data-value qualification codes included in this output:
A Approved for publication -- Processing and review completed.
P Provisional data subject to revision.

FHoH H o H W O H H H -

agency_cd site_no datetime 01_72019_00001 01_72019_00001_cd 01_72019_00002
01_72019_00002_cd 01_72019_00003 01_72019_00003_cd

5s 15s 20d 14n 10s 14n 10s 14n 10s

USGS 335334078352106 2012-12-28 5.45 A 5.40 A 5.43 A

USGS 335334078352106 2012-12-29 5.40 A 4.94 A 5.14 A

Read in the water levels file, remove extra headers, fix data types, and
save the revised information as an R data file:

The read. table function is used to read text files into R; it has many op-
tions to match different text file formats. Here we specify the comment
character with comment.char read. table will skip lines beginning with
that character. We also specify that there is a header line, and to fill
incomplete rows.

ds.nc <- read.table("./ds/NCwater/dv.txt", comment.char="#",
fi11=T, header=T)

names (ds.nc) <-
c("agency","site","date","min","minA", "max", "'maxA", "mean", "meanA")

Tength(ix <- which(ds.nc$agency == "agency_cd"))
[1] 47

ds.nc <- ds.nc[-ix,]

Tength(ix <- which(ds.nc$agency == "5s"))

[1] 48

ds.nc <- ds.nc[-ix,]

ds.nc$site <- as.character(ds.nc$site)

ds.nc$min <- as.numeric(as.character(ds.nc$min))
ds.nc$max <- as.numeric(as.character(ds.nc$max))
ds.nc$mean <- as.numeric(as.character(ds.nc$mean))

Tength(ix <- which(is.na(ds.nc$mean)))

[1] 9107

85

ds.nc[ix, "mean"] <- ds.nc[ix, "min"]

Tength(ix <- which(is.na(ds.nc$mean)))
[1] 106

ds.nc <- ds.nc[,c("site","date", "mean")]
str(ds.nc)

'data.frame': 17113 obs. of 3 variables:

$ site: chr "335334078352106" "335334078352106" "335334078352106" "335334078352106" ...

$ date: Factor w/ 367 levels "2012-12-28","2012-12-29",..: 1234567 8 9 10 ...
$ mean: num 5.43 5.14 4.94 4.9 4.86 4.84 4.83 4.84 4.84 4.82 ...

Tength(unique(ds.nc$site))
[1] 48

write.table(unique(ds.nc$site), file="./ds/NCwater/sites.txt", quote=F,
col.names=F, row.names=F)

Note that all points are on the NAD83 datum (equivalent to WGS84).

Now use this file at the USGS site to get the site information'*: site coord-
inates and altitude (to correct the water depths measured from the land
surface), as well as the datum. Specify “Site-description information dis-
played in tab-separated format - saved to file”. This file is automatically
named inventory; we rename it to inventory.txt. It looks like!>:

US Geological Survey

URL: http://nwis.waterdata.usgs.gov/nc/nwis/inventory
#

site_no -- Site identification number

station_nm -- Site name

dec_Tlat_va -- Decimal Tatitude

dec_long_va -- Decimal Tongitude

coord_acy_cd -- Latitude-longitude accuracy

dec_coord_datum_cd -- Decimal Latitude-Tongitude datum
alt_va -- Altitude of Gage/land surface

alt_acy_va -- Altitude accuracy

alt_datum_cd -- Altitude datum

#

there are 48 sites matching the search criteria.

#

site_no station_nm dec_lat_va dec_long_va coord_acy_cd dec_coord_datum_cd alt_va
alt_acy_va alt_datum_cd

15s 50s 16n 16n 1s 10s 8s 3s 10s

335334078352106 BR-123 CALABASH RS NR CALABASH, NC (SURFICIAL) 33.89277778
-78.58916670 S NAD83 47.28 1 NGVD29

335629078115406 BR-079 SUNSET HARBOR RS (PEEDEE) 33.94111110 -78.19861110 S NADS83
28.06 1 NGVD29

l4See http://waterdata.usgs.gov/nwis/si, accessed from the main page under
the “Site Information” button; then select “File of Site Numbers” and upload the
just-created site list.

15 Some comment lines have been removed for clarity

86

http://waterdata.usgs.gov/nwis/si

sites <- read.table("./ds/NCwater/inventory.txt",
sep="\t", comment.char="#", header=T)

names (sites)

[1] "site_no" "station_nm" "dec_lat_va"

[4] "dec_long_va" "coord_acy_cd" "dec_coord_datum_cd"
[7] "alt_va" "alt_acy_va" "alt_datum_cd"

remove the header Tine with format specs
sites[1,]

site_no station_nm dec_lat_va dec_long_va coord_acy_cd

1 15s 50s 16n 16n 1s
dec_coord_datum_cd alt_va alt_acy_va alt_datum_cd
1 10s 8s 3s 10s

sites <- sites[-1,]
view the first two sites

sites[1:2,]
site_no station_nm
2 335334078352106 BR-123 CALABASH RS NR CALABASH, NC (SURFICIAL)
3 335629078115406 BR-079 SUNSET HARBOR RS (PEEDEE)
dec_lat_va dec_long_va coord_acy_cd dec_coord_datum_cd alt_va
2 33.89277778 -78.58916670 S NAD83 47.28
3 33.94111110 -78.19861110 S NAD83 28.06
alt_acy_va alt_datum_cd
2 1 NGVD29
3 1 NGVD29

convert site numbers to strings to match data
sites$site_no <- as.character(sites$site_no)
unique(sites$dec_coord_datum_cd)

[1] NAD83
Levels: 10s NAD83

unique(sites$alt_datum_cd)

[1] NGVD29 NAVD88
Levels: 10s NAVD88 NGVD29

Convert the sites file to a SpatialPointsDataFrame object, with the
USGS site number and station elevation as the attributes, and save as an
R data object:

sites <- sites[,c("dec_long_va","dec_lat_va","site_no","alt_va")]

names(sites) <- c("long","lat","site","alt")

sites$long <- as.numeric(as.character(sites$long))

sites$lat <- as.numeric(as.character(sites$lat))

sites$alt <- as.numeric(as.character(sites$alt))

coordinates(sites) <- ~long + lat

proj4string(sites) <- CRS("+init=EPSG:4269")

plot(coordinates(sites), asp=1, xlab="E Tongitude", ylab="N Tlatitude",
ylim=c(33,37))

gridQ)

str(sites)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 48 obs. of 2 variables:
..$ site: chr [1:48] "335334078352106" "335629078115406" "335629078115407" "335631078003
..$ alt : num [1:48] 47.3 28.1 28.1 28.1 28.3 ...
..@ coords.nrs : int [1:2] 1 2
..@ coords : num [1:48, 1:2] -78.6 -78.2 -78.2 -78 -78 ...
..- attr(x, "dimnames")=List of 2
..$: chr [1:48] "2" "3" "4" "5"
e «. ..%$: chr [1:2] "long" "lat"
..@ bbox : hum [1:2, 1:2] -83.9 33.9 -76.3 36.3

87

..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "long" "lat"
.. ..$: chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS'

[package "sp"] with 1 slot

..@ projargs: chr "+init=EPSG:4269 +proj=longlat +datum=NAD83 +no_defs +el1ps=GRS80 +

save(sites, file="./ds/NCwater/sites.RData")

~ |
™
o
° o
8 - P o
o © ° ° ° °
° °
% o %00 ° e o
2 u
8 @ ° ° o 7
= °
=z
S o %
o |
]
-86 -84 -82 -80 -78 -76
E longitude

Now we can match the coordinates of the sites with the site numbers,
and create coordinate and altitude fields in the attribute data; use the
latter to get an elevation above sea level field:
unique(ix <- match(ds.nc$site, sites$site))

[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22

[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
[45] 45 46 47 48

ds.nc$long <- coordinates(sites)[ix,1]
ds.nc$lat <- coordinates(sites)[ix,2]
str(sites)

Formal class 'SpatialPointsDataFrame'

[package "sp"] with 5 slots

..@ data

:'data.frame':

48 obs.

of 2 variables:

..$ site: chr [1:48] "335334078352106" "335629078115406" "335629078115407" "335631078003

..$ alt : num [1:48] 47.3 28.1 28.1 28.1 28.3 ...
..@ coords.nrs : int [1:2] 1 2
..@ coords : num [1:48, 1:2] -78.6 -78.2 -78.2 -78 -78 ...

..- attr(*, "dimnames")=List of 2

..$: chr [1:48] "2" "3" "4" "5"
e «. ..$: chr [1:2] "long" "lat"
..@ bbox : num [1:2, 1:2] -83.9 33.9 -76.3 36.3
..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "long" "Tat"
. ..$: chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 sTot
..@ projargs: chr "+init=EPSG:4269 +proj=longlat +datum=NAD83 +no_defs +el1ps=GRS80 +

ds.nc$alt <- sites@datal[ix, "alt"]
ds.nc$z <- ds.nc$alt - ds.nc$mean
the site is a factor

ds.nc$site <- as.factor(ds.nc$site)
str(ds.nc)

'data.frame’:

17113 obs.

of 7 variables:

$ site:

Factor w/ 48 levels "335334078352106",..:

1111111111 ...

$ date: Factor w/ 367 levels "2012-12-28","2012-12-29",..:
$ mean: num 5.43 5.14 4.94 4.9 4.86 4.84 4.83 4.84 4.84 4.

12345678910 ...

B2 cac

88

$ long: num -78.6 -78.6 -78.6 -78.6 -78.6 ...
$ Tat : num 33.9 33.9 33.9 33.9 33.9 ...
$ alt : num 47.3 47.3 47.3 47.3 47.3 ...
$ z :num 41.9 42.1 42.3 42.4 42.4 ...

The date field can be converted with the as.POSIX1t function:

ds.nc$date <- as.POSIX1t(ds.nc$date)
class(ds.nc$date)

[1] "POSIX1t" "POSIXt"
ds.nc$date[2] - ds.nc$date[1]
Time difference of 1 days
str(ds.nc)

'data.frame': 17113 obs. of 7 variables:

$ site: Factor w/ 48 levels "335334078352106",..: 1 11 1111111...
$ date: POSIX1t, format: "2012-12-28" ...

$ mean: num 5.43 5.14 4.94 4.9 4.86 4.84 4.83 4.84 4.84 4.82 ...

$ long: num -78.6 -78.6 -78.6 -78.6 -78.6 ...

$ lat : num 33.9 33.9 33.9 33.9 33.9 ...

$ alt : num 47.3 47.3 47.3 47.3 47.3 ...

$ 2z :num 41.9 42.1 42.3 42.4 42.4 ...

The dataset is now a so-called long table: each entry has both its cotrd-
inates (spatial reference) and its time stamp, here a date.

TASK 58 : Save as an R data file, for later import with Toad. .
save(ds.nc, file="./ds/NCwater/example.RData")

89

References

[1] R. S. Bivand, E. J. Pebesma, and V. Gémez-Rubio. Applied Spa-
tial Data Analysis with R. UseR! Springer, 2008. http://www.
asdar-book.org/. 1

[2] John M. Chambers. Programming with Data. Springer, 1998. ISBN
ISBN 0-387-98503-4. 5

[3] Noel A. C. Cressie and Christopher K. Wikle. Statistics for spatio-
temporal data. Wiley series in probability and statistics. Wiley, 2011.
ISBN 9780471692744. 1

[4] J. C. Davis. Statistics and data analysis in geology. John Wiley &
Sons, New York, 3rd edition, 2002. 62

[5] K. R. Gabriel. The biplot graphic display of matrices with application
to principal component analysis. Biometrika, 58(3):453-467, 1971.
doi: 10.2307/2334381. 70

[6] Tilmann Gneiting, Marc G. Genton, and Peter Guttorp. Geostatisti-
cal Space-Time Models, Stationarity, Separability and Full Symmetry.
Number TR475 in Department of Statistics, University of Washing-
ton. 2005. URL http://www.stat.washington.edu/research/
reports/2005/tr475.pdf. 1

[7] P Goovaerts. Geostatistics for natural resources evaluation. Applied
Geostatistics. Oxford University Press, New York; Oxford, 1997. 1

[8] Gabor Grothendieck and Thomas Petzoldt. R Help Desk: Date and
time classes in R. R News, 4(1):29-32, 2004. 7

[9] Gerard B. M. Heuvelink and Daniel A. Griffith. Space-time geostatis-
tics for geography: A case study of radiation monitoring across
parts of Germany. Geographical Analysis, 42(2):161-179, 2010. doi:
10.1111/j.1538-4632.2010.00788.x. 48

[10] G. Jost, G. B. M. Heuvelink, and A. Papritz. Analysing the space-
time distribution of soil water storage of a forest ecosystem using
spatio-temporal kriging. Geoderma, 128(3-4):258-273, 2005. 48

[11] Phaedon C. Kyriakidis and André G. Journel. Geostatistical space-
time models: A review. Mathematical Geology, 31(6):651-684, 1999.
doi: 10.1023/A:1007528426688. 1

[12] P Legendre and L Legendre. Numerical ecology. Elsevier Science,
1998. 62

[13] Edzer Pebesma. spacetime: Spatio-temporal data in R. Journal
of Statistical Software, 51(7), 2012. URL http://www.jstatsoft.
org/v51/107. 1, 62

[14] Brian D. Ripley and Kurt Hornik. Date-time classes. R News, 1(2):
8-11, 2001. 6, 7

90

http://www.asdar-book.org/
http://www.asdar-book.org/
http://www.stat.washington.edu/research/reports/2005/tr475.pdf
http://www.stat.washington.edu/research/reports/2005/tr475.pdf
http://www.jstatsoft.org/v51/i07
http://www.jstatsoft.org/v51/i07

[15] Robert H. Shumway and David S. Stoffer. Time series analysis and its
applications with R examples. Springer texts in statistics. Springer,
New York, 3rd ed edition, 2011. ISBN 9781441978653. 1

[16] R. Webster and M. A. Oliver. Geostatistics for environmental scien-
tists. John Wiley & Sons Ltd., 2nd edition, 2008. 1

[17] Yihui Xie. knitr: Elegant, flexible and fast dynamic report gener-
ation with R, 2011. URL http://yihui.name/knitr/. Accessed
04-Mar-2016. 1

91

http://yihui.name/knitr/

Index of R Concepts
:: operator, 11

< operator, 42

== operator, 18, 42

> operator, 42

[operator, 27

[[]1] operator, 13

[] operator, 10, 11, 59
$ operator, 13

%% operator, 24

& operator, 42

acf, 19, 22

air dataset, 8

air dataset (spacetime package), 2
all, 11

apply, 11

as, 11, 22,27

as.character, 64
as.POSIX1t, 8, 89

as.ts, 19

attributes, 13, 18

bbox slot (sp class), 6
biplot.princomp, 75

c, 46

cbind, 59

ccf, 22

ceiling, 54

char2dms (sp package), 64

choices argument (biplot.princomp func-
tion), 75

class, 5

comment.char argument (; function), 85

control argument (optim function), 44

coordinates (sp package), 13, 28, 64

coords slot (SpatialPoints class), 13

coords slot (sp class), 6

cos, 13

CRS (sp package), 4

data, 2

data argument (krigeST function), 54

data slot (STIDF class), 82

data slot (SpatialPixelsDataFrame class),
59

data.frame class, 4

Date class, 4, 26, 27

dim, 12
do.call, 36
dX argument (variogram function), 37

endtime slot (STFDF class), 7
eof (spacetime package), 68
estiStAni (gstat package), 49

111 argument (map function), 15

fit.StVariogram(gstat package), 44, 46,
50

floor, 54

function, 36

get.env, 7
gstat package, 1, 2, 28, 30, 36, 40, 43, 49,
54, 62

hist, 25
how argument (eof function), 68

index (zoo package), 24
is.na, 11

joint argument (vgmST function), 43, 48,
49

knitr package, 1
krige (gstat package), 34
krigeST (gstat package), 54

Tapply, 35

Tattice package, 41, 67

Tevelplot (Tattice package), 41

load, 89

TongTat argument (spDists function), 24
Tower argument (optim function), 46

1s, 62

map (mapdata package), 15

map2SpatialPolygons (maptools package),
15

mapdata package, 15, 64

maptools package, 15

match, 65

method argument (fit.StVariogram func-
tion), 44

mode argument (stplot function), 53, 67

na.omit, 19

92

newdata argument (krigeST function), 54
nugget argument (vgmST function), 43

OlsonNames, 8
optim, 44, 46, 50
over, 32

pacf, 21

pc.biplot argument (biplot.pc function),
70

plot, 15, 28, 40, 44, 64, 69

plot.gstatVariogram (gstat package),
40, 41, 44

points, 15

POSIXct class, 6, 7, 76

POSIX1t class, 8

prcomp, 68

prcomp class, 68, 69

prncmp, 68

proj4string (sp package), 64

proj4stringslot(SpatialPoints class),
16, 24, 75

proj4string slot (sp class), 6, 7

rbind, 36

read.table, 85

rep, 32

require, 2

returnEOF argument (eof function), 68
returnEOFs argument (eof function), 69
row.names, 13

rug, 25

sample, 35

scales argument (xyplot function), 67

seq, 32

set.seed, 36

setdiff, 62

si11 argument (vgmST function), 46

slotNames, 5

sp class, 24

sp package, 1, 2, 6

sp slot (STFDF class), 7, 13, 24, 82

sp slot (STIDF class), 82

sp.layout argument (spplot function),
53, 60

space argument (stConstruct function),
65

space argument (vgmST function), 48

spacetime package, 1, 2, 5, 22, 25, 53, 54,
81

Spatial (sp class), 68

SpatialObj argument (stConstruct func-
tion), 65

SpatialPixels (sp class), 33

SpatialPixelsDataFrame (sp class), 59,
60

SpatialPoints (sp class), 4, 6, 75, 76, 82

SpatialPoints (sp package), 32

SpatialPointsDataFrame (sp class), 11,
16, 28, 35, 68, 87

SpatialPolygonsDataFrame (sp class), 4

spDists (sp package), 24

spplot (sp package), 53, 60

ST class (spacetime package), 27, 54, 65

stAni argument (vgmST function), 43, 49

stConstruct (spacetime package), 65, 81

STF (spacetime package), 53

STFDF (spacetime package), 5

STFDF class (spacetime package), 5, 10-
13, 16, 19, 22, 24, 27, 40, 53, 54,
59, 81, 82

STIDF class (spacetime package), 82

stModel argument (vgmST function), 43

stplot (spacetime package), 53, 54, 67

str, 5

STSDF class (spacetime package), 54

substr, 13-15, 18

summary, 12

Sys.setenv, 9

Sys.time, 7

Sys.timezone, 7

system.time, 40, 50

text, 15, 28

time argument (stConstruct function),
65

time argument (vgmST function), 48

time slot (STFDF class), 82

time slot (STIDF class), 82

unique, 14

variogram (gstat package), 30, 36, 40
variogramST (gstat package), 40

vgm (gstat package), 43

vgmST (gstat package), 43

wind dataset, 62

93

wireframe argument (plot.gstatVariogram
function), 41

worldHires dataset, 15, 64

writeOGR (rgdal package), 16

xts class, 11, 22, 26, 27, 68, 69
xts class (xts package), 6, 19
xts package, 1, 2, 6, 24
xyplot (Tattice package), 67

zcol argument (sppTlot function), 60
zoo package, 24

94

	1 Introduction
	2 Space-time objects
	2.1 Examining the structure of the dataset
	2.2 Ensuring consistent time reference
	2.3 Long-term time series
	2.4 Subsetting the data set

	3 Investigating local temporal structure
	4 Investigating spatial structure
	5 Constructing a grid for prediction
	6 Spatial prediction
	7 Investigating temporally-averaged spatial structure
	8 Spatial prediction with a temporally-averaged spatial structure
	9 Investigating spatio-temporal structure
	10 Modelling spatio-temporal structure
	10.1 Metric models
	10.2 Separable models
	10.3 Sum-metric models
	10.4 Comparing variogram model fits

	11 Spatio-temporal kriging
	12 Empirical orthogonal functions
	12.1 Computing EOF
	12.2 Interpreting EOF: the scree plot
	12.3 Interpreting EOF: the biplot

	13 Answers
	A Creating space-time objects
	B Creating space-time long format data frames from online data sources
	References
	Index of R concepts

