Unit 2

Soil Colloids

Scales to study soils

Interfaces

Chemical Principles:

First law of thermodynamics (conservation):

Energy (matter) is neither created nor destroyed, it changes from one form to another.

The total amount of energy and matter in the Universe remains constant, merely changing from one form to another.

Mass Action

$A + B \rightleftharpoons C + D$

Charge Balance

Soil Colloids

Soil Colloids

							in	crea	ses								
GROUP						Dania	Jie Te					Ato	mic s	size (radii)	101.0
						Perio	dic Ta	010 01	the El	ement	S						18
H	2											10		16	16		He
1.0079	4	1										13	14	15		17	4.0026
Li	Be											B	°C	Ň	8 0	F	10 Ne
6 941	9 0122											10.811	12.011	14.007	15.999	18.998	20.180
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
22.990	24.305	3	4	5	6	7	8	9	10	11	12	26.982	28.086			35.453	39.948
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33	34	35	36
39.098	40.078	4.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	As 74.922	Se 78.96	Br 79.904	Kr 83.80
37	38	39 Y	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.468	Sr 87.62	¥ 88.906	Zr 91.224	Nb 92.906	Mo 95.94	Tc 98.906*	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd 112.41	In 114.82	Sn 118.71	Sb 121.76	Te 127.60	I 126.90	Xe 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.91	Ba 137.33	La 1 138.91	Hf 178,49	Ta 180.95	W 183.84	Re 186.21	Os 190.23	Ir 192.22	Pt 195.08	Au 196.97	Hg 200.59	Tl 204.38	Pb 207.2	Bi 208.98	Po 209.98*	At 209.99*	Rn 2222.02
87	88	89	104	105	106	107	108	109	110	111	112						
Fr 223.02	Ra 226.03"	Ac 227.03	▲ Rf (261)	Db (262)	Sg (266)	Bh (262)	Hs (269)	Mt (266)	(273)	(272)	(294)						
			()	(202)	(200)	(202)	(203)	(200)	(275)	(272)	(2)4)	1					
		*Lant	hanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
		Sei		Ce 140.12	Pr 140.91	Nd 144.24	Pm 146.92"	Sm 150.36	Eu 151.96	Gd	Tb	Dy 162.50	Ho 164.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.97
													101125	107.20	100.75	175.04	117.37
Actinide				90	91	92 T	93	94	95	96	97	98	99	100	101	102	103
		ser	ies	Th 232.04*	Pa 231.04	U 238.03	Np 237.05	Pu 239.05"	Am 241.06*	Cm 244.06'	Bk 249.08*	Cf 252.08*	Es 252.08°	Fm 257,10°	Md 258.10*	No	Lr 262.11"

Note: Atomic masses shown here are the 1993 IUPAC values with a maxium of five significant figures (T. B. Coplen *et al.*, *Inorg. Chim. Acta* 1994, 217, 217). An asterisk indicates the mass of a commonly known radioisotope. Numbers in parentheses are the mass numbers of the corresponding longer-lived isotope.

increases

ᡟ

Elemental Composition of Soils

TABLE 1.2 Mean elemental content (in mg kg⁻¹) of soil and crustal rocks, and the soil enrichment factor (EF)

	EF°	Crust ^b	Soil ^{a,b}	Element	EF°	Crust ^b	Soil ^{a,b}	Element
	0.80	75	60	Zn	1.2	20	24	Li
Enrichment or	0.94	18	17	Ga	0.35	2.6	0.92	Be
depletion	0.67	1.8	1.2	Ge	3.3	10	33	В
	4.8	1.5	7.2	As	52	480	25,000	C
EF 0.5 – 2.0	7.8	0.05	0.39	Se	80	25	2,000	N
is not significar	2.3	0.37	0.85	Br	1.0	474,000	490,000	0
(large std. dev.	0.74	90	67	Rb	2.2	430	950	F
`	0.65	370	240	Sr	0.52	23,000	12,000	Na
	0.83	30	25	Y	0.39	23,000	9,000	Mg
	1.2	190	230	Zr	0.88	82,000	72,000	Al
	0.55	20	11	Nb	1.1	277,000	310,000	Si
	0.65	1.5	0.97	Mo	0.43	1,000	430	Р
	0.71	0.07	0.05	Ag	6.2	260	1,600	S
	3.2	0.11	0.35	Cd	0.77	130	100	Cl
	0.59	2.2	1.3	Sn	0.71	21,000	15,000	K
	3.3	0.20	0.66	Sb	0.59	41,000	24,000	Ca
	8.6	0.14	1.2	I	0.56	16	8.9	Sc
	1.3	3.0	4.0	Cs	0.52	5,600	2,900	Ti
	1.2	500	580	Ba	0.50	160	80	v
O, Si, and Al	1.2	32	37	La	0.54	100	54	Cr
the most	1.8	0.05	0.09	Hg	0.58	950	550	Mn
abundant	1.4	14	19	Pb	0.63	41,000	26,000	► Fe
	1.2	38	46	Nd	0.46	20	9.1	Co
	0.78	12	9.4	Th	0.24	80	19	Ni
	1.1	2.4	2.7	U	0.50	50	25	Cu

Trace element: mass concentration in the solid phase is ≤ 100 mg kg⁻¹

Conversion of primary minerals to secondary minerals with the release of plant nutrient elements in soluble forms

Primary Mineral (parent material) rock-forming minerals

- formed at high temperatures and pressures
- therefore, unstable under current atmospheric conditions

Weathering

Secondary Mineral + (soils)

 soluble elements ("solutes")

- form under current atmospheric conditions
- may be unstable if conditions change from those of their formation

typically clay sized: < 2 μ m

Types of Colloids found in Soils:

Crystalline silicate clays Phylosilicates → tetrahedral and octahedral crystal sheets Non-crystalline silicate clays (Andisols) Dominately amorphous clays (allophane and imogolite) Iron and aluminum oxides (Oxisols & ...) Gibbsite (Al-oxide) and goethite (Fe-oxide) Organic (humus) colloids (Histosols &...)

Colloidal sized soil organic matter

Permanent charge minerals

layer silicate clays with structural negative charge

Variable (pH-dependent) charge minerals surface charge that is pH dependent (allophanes (amorphous, high charge); Fe/Al oxide (more crystalline, low charge); organic molecules

Aim to understand the structures of soil minerals (typically represented like this):

Building Blocks of Soil Minerals – molecular scale

Si and Al tetrahedra - (MO₄)

Al, Fe, Mg octahedra - (MO_6)

What determines the expected ion coordination?

TABLE 8.2Ionic Radii of Elements Found in Silicate Claysand an Indication of Which Are Found in the Tetrahedral andOctahedral SheetsSize (relative size)

Note that Al, Fe, O, and OH can fit in either.

Ion	Radius, nm ^a	Minimum Radius Ratio Found in
$\begin{array}{l} Si^{4+} \\ Al^{3+} \\ Fe^{3+} \\ Mg^{2+} \\ Zn^{2+} \\ Fe^{2+} \\ Na^{+} \\ Ca^{2+} \\ K^{+} \\ O^{2-} \\ OH^{-} \end{array}$	$ \begin{array}{c} 0.042\\ 0.051\\ 0.064\\ 0.066\\ 0.074\\ 0.074\\ 0.070\\ 0.097\\ 0.099\\ 0.133\\ 0.140\\ 0.155 \end{array} $	CN = 4 0.225 Tetrahedral sheet 0.225 Octahedral sheet Exchange sites CN = 6 0.414 Both sheets

 $a 1 nm = 10^{-9} m.$

Linking Tetrahedra and Octahedra to Form Sheets

Main class of soil minerals (phyllosilicates) are formed by:

linking Si (AI) tetrahedra — form tetrahedral sheets

linking AI (Mg, Fe) octahedra — form octahedral sheets

Linking Tetrahedra:

Linking Octahedra:

Tetrahedral Sheet

Formed by a sharing of 3 O to form hexagonal rings

Hexagonal ring

Si tetrahedra only share corners

Octahedral Sheets – polyhedral view

<u>Octahedral</u> Cation Occupancy position of divalent and trivalent cations

Tetrahedra-Octahedra linkage

Sharing apical oxygens in tetrahedral sheet with hydroxyls of octahedral sheet

2:1 mineral

Secondary Minerals: Layer Silicates or Phyllosilicates composed of Si, Al tetrahedra; Mg, Al, Fe octahedra

"aluminosilicates"

Classification based on:

- number of tetrahedra and octahedra in a layer

- octahedral site occupancy (octahedral composition: who and how many cations in octahedral positions)

- charge for each layer (layer charge)

Secondary minerals: number of tetrahedra and octahedra in a layer

simplest - single octahedra

Secondary minerals: <u>octahedral site occupancy</u> position of divalent and trivalent cations

Dioctahedral \longrightarrow 2 of 3 sites occupied by M³⁺

Trioctahedral \longrightarrow 3 of 3 sites occupied by M²⁺

Charge:

"Soils are negatively charged" "Minerals e

"Minerals exert a charge"

How?

Isomorphic substitution (results in pH independent charge)
 Al³⁺ for Si⁴⁺ substitution in tetrahedral sheet

Mg²⁺/Fe²⁺ substitution for Al³⁺/Fe³⁺ in octahedral sheet

2. Terminal broken bonds (pH dependent charge)

Dissociation of pH-dependent functional groups: surface hydroxyl (OH) groups in minerals and organic matter

Why is charge important? Reactivity towards everything

1. Isomorphous substitution: develops a charge within a mineral layer

Permanent or Structural Charge: it is <u>pH independent</u>

replacement of one ion with another having a <u>different charge</u> but with <u>no change in</u> <u>the mineral structure</u>

Secondary minerals: charge <u>within</u> a layer Permanent or Structural Charge: it is <u>pH independent</u>

Charge sites located <u>within</u> the tetrahedral (Al³⁺ for Si⁴⁺) or/and octahedral (Mg²⁺ for Al³⁺) sheet

2. Terminal broken bonds: pH dependent (variable) charge

addition or release of protons from the surface results in different charges

Minerals

- Al – OH₂⁺ ···· Cl⁻ Anion Exchange Sites Low pH (protonation) - Al – O ⁻ … Na⁺

Cation Exchange Sites High pH

Soil Organic Matter

2. Terminal broken bonds: pH dependent (variable) charge

Where do they develop?

goethite - α -FeOOH

all faces of (hydrous) oxides

-- Surface hydroxyl (OH) groups of Al/Fe
oxides (crystalline minerals)
-- Amorphous (noncrystalline) minerals
(allophane)

Secondary layer aluminosilicate minerals:

Charge: permanent (structural) and pH-dependent

Predominant ?

TABLE 8.5 Charge Characteristics of Representative Colloids Showing Comparative Levels of Permanent (Constant) and pH-Dependent Negative Charges as Well as pH-Dependent Positive Charges

Colloid type	Total at pH 7, cmol _c /kg	Constant, %	pH dependent, %	Positive charge, cmol _c /kg	
Organic	200	10	90	0	
Smectite	100	95	5	0	
Vermiculite	150	95	5	0	
Fine-grained micas (illite)	30	80	20	0	
Chlorite	30	80	20	0	
Kaolinite	8	5	95	2	
Gibbsite (Al)	4	0	100	5	
Goethite (Fe)	4	0	100	5	
Allophane	30	10	90	15	

Cations (K⁺, Na^{+,} Ca²⁺, Mg²⁺) and anions sorbed between sheets and on the edges balance the charge

Smeetil, Keelinik gibbsil, Ferri, Org main (mont) 1:1 (Alox.) (Fe oxil Cpeat) 0.3g 0.3g 0.3g

Layer Silicates: **Mineral Groups**

Classification based on:

Number of tetrahedra and octahedra

Octahedral site occupancy (tri- and dioctahedral)

Charge for each layer (magnitude and location)

platy morphology x-y dimensions: $\sim 10^{-6}$ m z dimensions: ~ 10^{-9} m

Clay swelling in water depends on:

- Magnitude of layer charge (vermiculite vs. smectite)
- Location of charge in 2:1 layer (tetrahedral vs. octahedral)
- Exchange cation charge (and hydration) • Na⁺ clays freely expand, Ca²⁺ and Mg²⁺ clays

do not

Chicago – suburb built on drained wetland

example: engineering medium

organic matter decomposition, "wrong" clays shoring up the house: > \$30,000

Weathering

Mineralogical transformations - a slow transition from primary (rock-forming) to secondary (soil-formed) minerals

Chemical composition - a long-term result of losses in base cations, silica

time, high rainfall, high temperature

Reactions at the Solid-Solution Interface – Retention Mechanisms

Retention: net accumulation of matter at the interface between a solid phase and an aqueous solution phase (ability of soils/colloids to remove ions from solution)

leaching $\stackrel{\oplus}{\uparrow}$

Ð

Ion Exchange on Soil Colloids

one of the mechanisms by which (soil) colloids hold ions against leaching loss, hold nutrients in ecosystems and keep pollutants out of ground and surface water

Electroneutrality

Mass Action & Charge Balance

Ion exchange = the process CEC = the property of the colloid/soil

Retention Mechanisms

Outer- and **Inner-** Sphere Complexes

Ion Hydration:

ionic potential = z^2/r **z** = charge; **r** = radius

smaller and more charged ion: higher ionic potential hydrate most strongly

Ion Exchange: The Process

reversible

forward and backward reactions coincide

stoichiometric

- ions that leave colloid surface are replaced by equivalent amount of other ions

 exchange takes place in a charge-for-charge basis

(exchange reactions can occur between cations of <u>equal</u> or <u>unequal</u> charge)

(electroneutrality)

diffusion controlled

- molecular diffusion in aqueous environments

electrostatic

nonspecific (outer-sphere)

medium-long range

Mostly from permanent charge minerals and soil organic matter Al and Fe oxides, kaolinite - no real contribution to CEC of soils

Cation Exchange on Permanent Charge Minerals (Layer Aluminosilicate Clays)

Exchange Equation:

Colloid-Mg²⁺ (solid) + Ca²⁺ (aq) = Colloid-Ca²⁺ (solid) + Mg²⁺ Mg²⁺ + 2Ca²⁺ $\xrightarrow{Ca^{2+}}$ + 2Mg²⁺

General Rules:

selectivity of cation by exchanger based on the ion's charge/size (ionic potential = z^2/r)

size:

the smaller the <u>hydrated radius</u> the greater the affinity (same charge) (ions with small dehydrated radius have large hydrated)

charge:

the higher the charge the greater the exchanger preference (3+>2+>1+)

For example: $AI^{3+} > Ca^{2+} > Mg^{2+} > K^+ \sim NH_4^+ > Na^+$

Cation selectivity is determined by extent of cation hydration

Soil Organic Matter

Surface Functional Groups (hydroxyl, carboxylic, alcohols, phenols)

General Rule: selectivity of cation by exchanger based on the ion's charge/size

Order of Selectivity:
$$Cs^+ > Rb^+ > K^+ > Na^+ > Li^+$$

 $Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+}$
 $Al^{3+} > M^{2+} > M^+$

Anion Exchange Capacity (AEC) Terminal broken bonds: pH dependent (variable) charge **Minerals** Low pH (protonation) $+ H^+$ $- Al - OH]^{0}$ \rightarrow - Al - OH₂⁺ ···· Cl⁻ $+ Cl^{-}$ Anion Exchange Sites **Soil Organic Matter** Large complex organic humus Low pH molecule consisting of chains and rings of mainly carbon and + H⁺ $\implies -C - OH_2^+$ OH 0hydrogen atoms Positive charge No charge (soil solution) ÓH (soil solids) (soil solids) 0-QH Carboxyl group OH₂+ Phenolic Alcoholic hydroxyl hydroxyl group group

AEC is generally much smaller than CEC Attraction of anions to oxide minerals and SOM

Complimentary cations: Influence plant uptake and leaching

At a given %K⁺ saturation, K⁺ is more readily available for both plant uptake and leaching in acid soils (lots of AI^{3+}) than in neutral to alkaline soils. Why?

Cation Exchange Capacity (CEC) – The Property

Assessment of the **<u>quantity</u>** of cations <u>reversibly retained (electrostatic)</u> per unit weight of mineral/organic matter/soil

mmol(+) charge / kg

Magnitude of CEC determined by the nature and content of clay minerals and organic matter

CEC is <u>related</u> to the negative charge of the soil colloids

CEC of soils is usually dominated by Ca²⁺, Mg²⁺, Na⁺, K⁺, Al³⁺

CEC (mmol charge) ~ 2[Ca] + 2[Mg] + [Na] + [K] + 3[AI]

Determination of Cation Exchange Capacity in Soils

Leach soil with a <u>concentrated</u> solution of an exchanger cation (NH₄⁺, Ba²⁺, Sr²⁺)

1. determine elements in the leachate (usually Ca, Mg, Na, K, Al)

2. measure exchanger cation adsorbed (requires an extra step: need to leach the exchanger cation)

Buffered (NH₄⁺ at pH 7, Ba²⁺ at pH 8.2) and Unbuffered (soil pH) methods

Exchangeable ions are essential for maintaining plant nutrient levels but are not "held" strong enough to immobilize environmental pollutants

TABLE 8.7 The Average Cation Exchange Capacities (CEC) and pH Values of More Than 3000 Surface Soil Samples Representing Nine Different Soil Orders

Relationships: Weathering intensity, mineralogy and CEC/AEC

Relationships: Soil pH, CEC, AEC, retention/sorption of cations/anions

Base Saturation (BS) of Cation Exchange Sites

a measure of proportion of cations (compared with hydronium ions) on exchange sites

number of exchange sites occupied by Ca + Mg + K + Na

total number of exchange sites

high base saturation values are desirable

Soils with low CEC and/or a small base saturation value are susceptible to acidification by either natural or anthropogenic inputs

BS

x 100

SOILS	pH	CEC (mmole kg ⁻¹)	EXCHANGEABLE CATIONS (% OF TOTAL)				
			Ca ²⁺	Mg ²⁺	K ⁺	Na ⁺	$H^+ (Al^{3+})^b$
Average of agricultural soils (Netherlands)	7.0	383	79.0	13.0	2.0	6.0	o - ⁸ 17
Average of agricultural soils (California)	7.0	203	65.6	26.3	5.5	2.6	_
Chernozem or Mollisoll (Russia)	7.0	561	84.3	11.0	1.6	3.0	
Sodic Merced soil (California)	10.0	189	0.0	0.0	5.0	95.0	0.0
Lanna soil, unlimed (Sweden)	4.6	173	48.0	15.7	1.8	0.9	33.6
Lanna soil, limed (Sweden)	5.9	200	69.6	11.1	1.5	0.5	17.3

CEC Values and Major Exchangeable Cations of Selected Soils^a

^aFrom F. E. Bear (Ed.), *Chemistry of the Soil*, 2nd ed. American Chemical Society, Washington, D.C., 1964, p. 167.

^bProbably includes some titratable acidity (Chapter 8).