Soil Organisms and Soil Ecology

TABLE | |.4Relative Numbers and Biomass of Fauna and FloraCommonly Found in the Surface | 5 cm of Soil^a

Since metabolic activity is generally related to biomass, microflora and earthworms dominate the life of most soils.

	Number		Biomass ^b	
Organisms	Per m ²	Per gram	kg/ha	g/m^2
Microflora				
Bacteria	$10^{13} - 10^{14}$	$10^{8} - 10^{9}$	400-5000	40-500
Actinomycetes	$10^{12} - 10^{13}$	$10^{7} - 10^{8}$	400-5000	40-500
Fungi	1010-1011	$10^{5} - 10^{6}$	1,000-15,000	100-1500
Algae	$10^9 - 10^{10}$	$10^{4} - 10^{5}$	10-500	1-50
Fauna				
Protozoa	109-1010	$10^{4} - 10^{5}$	20-200	2-20
Nematodes	$10^{6} - 10^{7}$	$10 - 10^2$	10-150	1-15
Mites	$10^{3} - 10^{6}$	1-10	5-150	.5-1.5
Collembola	$10^{3} - 10^{6}$	1-10	5-150	.5-1.5
Earthworms	$10 - 10^3$		100-1500	10-150
Other fauna	$10^{2}-10^{4}$		10-100	1-10

^a A greater depth is used for earthworms.

^b Biomass values are on a liveweight basis. Dry weights are about 20 to 25% of these values.

Based on Size	Based on RNA Sequencing (Phylogeny)
Macrofauna/flora (>2mm) Mesofauna (0.1 – 2 mm) Microfauna/flora (< 0.1 mm)	Eukaryotes Eubacteria Archaebacteria
Based on Energy Source Autotrophs Heterotrophs Lithotrophs Methylotrophs Chemolithotrophs	Based on Trophic Level Primary Producers Primary Consumers Herbivores Secondary Consumers Carnivores Tertiary Consumers Detritivore

Classification Based on Trophic Level

Based on Size

Macrofauna/flora (>2mm) Mesofauna (0.1 – 2 mm) Microfauna/flora (< 0.1 mm)

> Based on Energy Autotrophs Heterotrophs Lithotrophs Methylotrophs Chemolithotrophs

Based on RNA Sequencing Eukaryotes Eubacteria Archaebacteria Based on Trophic Level Primary Producers Primary Consumers Herbivores

Carnivores

Detritivore

Secondary Consumers

Tertiary Consumers

Organizes are understanding of the system using a very simple ecosystem structure

and

raises questions into form/function, ecosystem dynamics and process oriented relationships in the soil.

Classification Based on Size

Based on Size

Macrofauna/flora (>2mm) Mesofauna (0.1 - 2 mm)Microfauna/flora (< 0.1 mm)

Based on RNA Sequencing Eukaryotes Eubacteria Archaebacteria

Based on Trophic Level Based on Energy Autotrophs Heterotrophs Lithotrophs Methylotrophs Chemolithotrophs

Primary Producers Primary Consumers Herbivores Secondary Consumers Carnivores **Tertiary Consumers** Detritivore

Generalized grouping (width in mm)	Major specific groups	Examples
	0	
Macrofauna (>2mm)	NZ 1	Contant and a set
All heterotrophs,	Vertebrates	Gophers, mice, moles
largely herbivores and detritivores	Arthropods	Ants, beetles and their larvae, centipedes, grubs, maggots, millipedes, spiders, termites, woodlice
	Annelids	Earthworms
	Mollusks	Snails, slugs
Macroflora		
Largely autotrophs	Vascular plants	Feeder roots
	Bryophytes	Mosses
Mesofauna (0.1-2 mm)		
All heterotrophs,	Arthropods	Mites, collembola (springtails)
largely detritivores	Annelids	Enchytraeid (pot) worms
All heterotrophs, largely predators	Arthropods	Mites, protura
Microfauna (<0.1 mm)		
Detritivores,	Nematodes	Nematodes
predators, fungivores,	Rotifera*	Rotifers
bacterivores	Protozoa*	Amoebae, ciliates, flagellates
Microflora (<0.1 mm)		
Largely autotrophs	Vascular plants	Root hairs
с, <u>г</u>	Algae	Greens, yellow-greens, diatoms
Largely heterotrophs	Fungi	Yeasts, mildews, molds, rusts, mushrooms
	Actinomycetes	Many kinds of actinomycetes
Heterotrophs and autotrophs	Bacteria ^b (and Archaea ^b)	Aerobes, anaerobes
a successive de la construction de	Cyanobacteria	Blue-green algae

^a Generally classified in the kingdom *Protista*.
^b Traditionally classified together in the kingdom *Monera*, these organisms have prokaryotic cells but are classed in the domains Bacteria or Archaea based on differences in RNA.

Size Matters!

Bags started with 558 mg

Classification Based on RNA Sequencing

Eukaryotes

- Plants
- Fungi
- Animals
- Ciliates
- Flagellates
- Slime molds

Non-animals		Animals	
large	Plants (roots)	Gophers, moles, prairie dogs Earthworms	large
	Algae	Slugs Ants, termites	
	Fungi Mushrooms Molds Yeasts	Spiders Mites Nematodes	small
c	Slime molds Cellular Acellular		
small	Protozoa		

EUCARYA

Plants - feed microbes

Rhizosphere - zone of root's influence on soil. root exudates (organic acids, sugars, etc.)

exudates stimulate fungi & bacteria

- --> 10-100x more microbes than in bulk soil
- root hosts <u>harmless</u>, <u>parasitic</u> and <u>symbiotic</u> organisms

<u>Soil Animals</u> - nematodes, insects, slugs, earthworms, etc.

 heterotrophic, aerobic, mobile, mostly in topsoil and litter, few in compacted or very wet soil.

<u>Protozoa and Algae</u> - active & abundant in <u>wet</u> soil

- Algae single-celled phototrophs
- Protozoa non-photosynthetic, singlecelled organotrophs
 - mobile, prey on live bacteria, control population

<u>Fungi</u> - active and abundant in <u>normally</u> <u>moist aerated</u> soil.

- organotrophic
- include YEASTS (single-celled, sometimes anaerobic)
- include MOLDS
 - strictly aerobic
 - filamentous mycelia
 - extends cm-->m in soil
- include MUSHROOMS, bracket fungi

Importance of fungi:

- --> mycelia promote aggregation
- --> associate with plant roots

PATHOGENS, HARMLESS, SYMBIOTIC

--> prominent in most aerobic soils ---> decomposers

Archaebacteria

Extreme Halophiles - salt

Methanogens

Extreme Thermophiles

Extreme halophiles

Methanogens - methane producing strictly anaerobic

autotrophic $CO_2 + 4H_2 ---> CH_4 + 2H_2O$

also: formate (HCOOH) Carbon monoxide (CO) Methyl substances (contain CH₃) Acetate (CH₃COOH)

Extremely thermophilic 110°C or higher (limit to life forms?)

Eubacteria (Bacteria)

Some important and interesting kinds of bacteria:

Actinomycetes - a class of bacteria very common in soils. Rod-shaped or filamentous

The Pseudomonads - organotrophic aerobes, neutral pH, mesophiles. Some use over 100 organic compounds

N-fixing bacteria - will convert N^o₂ to NH⁺₄ but prefer to use NH⁺₄ if available

Rhizobia and Bradyrhizobia - legume nodulators

Azotobacter - free living

Spirilla

Azospirillum lipoferum - N-fixing with loose symbiotic relationship with tropical grasses and grain crops.

Classification Based on Energy Source

Based on Size	Based on RNA Sequencing
Macrofauna/flora (>2mm)	Eukaryotes
Mesofauna (0.1 – 2 mm)	Eubacteria
Microfauna/flora (< 0.1 mm)	Archaebacteria
	Deceder Trenkis Level
Based on Energy Autotrophs	Based on Trophic Level
Heterotrophs	Primary Producers
Lithotrophs	Primary Consumers Herbivores
Methylotrophs	Secondary Consumers Carnivores
Chemolithotrophs	Tertiary Consumers Detritivore

	Metabolic Grouping of Soil Organisms According to Their Source of Metabolic Energy and of Carbon for Biochemical Synthesis	
		_

	Source of energy		
Source of carbon	Biochemical oxidation	Solar radiation	
Combined organic carbon	Chemoheterotrophs: All animals, fungi, actinomycetes, and most bacteria	Photoheterotrophs: A few algae	
	Examples:		
	Earthworms		
	Aspergillus		
	Azotobacter		
	Pseudomonas		
Carbon dioxide	Chemoautotrophs	Photoautotrophs: Algae and cyanobacteria	
	Examples:	Examples:	
	Ammonia oxidizers-Nitrosomonas	Chorella	
	Sulfur oxidizers—Thiobacillus denitrificans	Nostoc	

Phototrophs - contain chlorophyl, assimilate CO₂

Organotrophs - feed on organic matter aerobic - aerobic respiration, produces CO₂ anaerobic - anerobic respiration, fermentation, produces smaller organic molecules

Methylotrophs - oxidize single carbon compounds e.g. methane (CH₄) methanol (CH₃OH) carbon monoxide (CO)

Methanotrophs - oxidize methane (CH₄) cannot use compounds with C-C bonds

Classification by oxygen requirements

Aerobes - use only O₂ as electron acceptor in respiration

Anaerobes - cannot use O_2 as electron acceptor, use the next most easily reduced element.

Oxidized form	Reduced form	E _h at which change of form occurs (V)
O ₂	H ₂ O	0.38 to 0.32
NO ₃ -	N ₂	0.28 to 0.22
Mn ⁴⁺	Mn ²⁺	0.22 to 0.18
Fe ³⁺	Fe ²⁺	0.11 to 0.08
SO4 ²⁻	S ²⁻	-0.14 to -0.17
CO ₂	CH₄	-0.2 to -0.28

Facultative anaerobes - use O₂ if available, if not will use other elements

Anaerobic Soils -

Once O₂ is consumed, other substances become reduced.

Z	FAIRLY WET	$MnO_2 + 4H^+> Mn^{2+} + H_2O$
ACTIC	wer	$Fe(OH)_3 + 3H^+> Fe^{2+} + 3H_2O$
OF REDUCTION		$NO_{3}^{-} + nH^{+} - N_{2'} N_{2}O + H_{2}O$
ORDER	WATER-	$SO_4^{-2} + 10H^+> H_2S + 4H_2O$
0	LOGGED	$SO_4^{-2} + 10H^+> H_2S + 4H_2O$ $CH_3OH + H^+> CH_4 + H_2O$

DENTRIFICATION -

- reduction of nitrate to gaseous N₂ & N₂O
- causes significant losses of N from agricultural soil
- favored by warm, wet conditions, lots of nitrate and decomposable organic matter.

Soil Flooding - Sequence:

- 1. Free O_2 drops to ~O (as little as 1/2 day after flooding in warm weather
- 2. Anaerobic microbes take over ---> fermentation produces organic acids, alcohol, methane
- 3. Mn²⁺ and Fe²⁺ become important soluble and exchange ions.
- 4. Zones of Fe reduction appear as pale blue-green or grey (mottling)
- 5. pH moves toward 7
- 6. Phosphate becomes more available

Few crops exploit "benefits" of flooding because they are not adapted. (exceptions: rice, ..)

Lithotrophs (use inorganic electron donors)

Nitrogen Oxidizing Bacteria - requires 2 steps

Sulfur oxidizing bacteria H_2S , sulfides, S°, $S_2O_3^{-2}$, SO_3^{-1} are oxidized to SO_4^{-2} S-2 - 8e' --> S+6 S° - 6e' --> S+6 S⁺² - 4e⁻ --> S⁺⁶ $S^{+5} - 1e^{-} -> S^{+6}$ $0^{\circ} + 2e^{-} -> 0^{-2}$ Hydrogen oxidizing bacteria facultative lithotrophs, are also organothophic H[°]₂ - 2e --> 2H⁺ 1/20° + 2e --> 0-2

H^o₂ is a product of fermentation

interesting -- CO is oxidized by a facultative H^o₂ oxidizer in soils