The Colloid Fraction of Soil

• Size – 1 μ m in size (2 μ m?)

Surface Area

- Surface Charge (generally negative)
- Cation (and Anion) Adsorption

Types of Soil Colloids

- Crystalline silicate clays
 - Phylosilicates \rightarrow tetrahedral and octahedral crystal sheets
- Non-crystalline silicate clays (Andisols)
 Dominately amorphous clays (allophane and imogolite)
- Iron and aluminum oxides (Oxisols & ...)
 - Dominately gibbsite (Al-oxide) and goethite (Fe-oxide)
- Organic (humus) colloids (Histosols &...)
 - Non-crystalline colloids dominated by long C-chain molecules

Types of Soil Colloids

- Crystalline silicate clays
 - Phylosilicates \rightarrow tetrahedral and octahedral crystal sheets
- Non-crystalline silicate clays (Andisols)
 Dominately amorphous clays (allophane and imogolite)
- Iron and aluminum oxides (Oxisols & ...)
 Dominately gibbsite (Al-oxide) and goethite (Fe-oxide)
- Organic (humus) colloids (Histosols &...) – Non-crystalline colloids dominated by long C-chain molecules

- lons dissolved in magma or water move rapidly
- No regular pattern

 lons "frozen" in solid crystal have symmetrical repeating pattern

Chemical Weathering

Process that changes minerals from their original composition to a new composition by:

- Hydrolysis addition of a H⁺ to the structure
- Hydration addition of a water molecule
- Oxidation / Reduction gain or loss of an electron
- Dissolution / Carbonation H⁺ from H₂CO₃

Composition of the Earth's Crust

Tetrahedra - Si

Octahedra – Al or Mg

Energy level	# of electrons		
	needed to fill shell		
1	2		
2	8		
3	8		
4	8		
5	8		

	1.00		Number of electrons in outermost shell							
	Energy level 1	Electron shell K	1 1 H Hydrogen						Atomic number	2 -2 He Helium
			1	2	3	4	5	6	7	8
	2	Ĺ	3 Li Lithium	4 Be Beryllium	5 B Boron	6 C Carbon	7 N Nitrogen	8 O Oxygen	9 F Fluorine	10 Ne Neon
			11	12	13	14	15	16	17	18
	3	М	Na	Mg	AI	Si	Р	S	CI	Ar
			Sodium	Magnesium	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
			19 K	20 Ca	31	32	33	34	35	36
	4	Ν	Potassium 29 Cu	Calcium 26 Fe	Ga	Ge	As	Se	Br	Kr
			Copper	Iron	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
	Cova	lence	1	2	3	4	3	2	1	1 Inorty
First shell Electron (+) (+) Proton	9		leave a	ctrons to n octet in ower shell				Gain elect complet	trons to te an octet	octet filled
(+) (+) Proton Nucleus (-) Neutron				I	Energy	level	# of ele	ctrons		
Hydrogen (H) Z = 1 Heli	um (He) (= 2					n	eeded to	o fill she	ell	
					1		2			
Second shell	0 N				2		8			
		Ì			3		8			
le le		/			4		8			
Lithium (Li) Carb $Z = 3$ Z) on (C) = 6				5		8			

CONNECT THE TETRAHEDRA

SILICA TETRAHEDRAL RING

Si₆O₁₈

SILICA TETRAHEDRAL RING

TETRAHEDRAL SHEET

unsaturated apical oxygens

OCTAHEDRAL SHEET

OCTAHEDRAL-TETRAHEDRAL LINKAGE

Sharing of Apical Oxygens in Tetrahdral Sheet with Hydroxyls of Octahedral Sheet

Serpentine (1:1 trioctahedral mineral)

OCTAHEDRAL-TETRAHEDRAL LINKAGE

Sharing of Apical Oxygens in Tetrahdral Sheet with Hydroxyls of Two Octahedral Sheets

Talc (2:1 trioctahedral mineral)

TABLE 8.2 Ionic Radii of Elements Found in Silicate Clays and an Indication of Which Are Found in the Tetrahedral and Octahedral Sheets

Ion	Radius, nm ^a	Found in			
	$ \begin{array}{c} 0.042\\ 0.051\\ 0.064\\ 0.066\\ 0.074\\ 0.070\\ 0.097\\ 0.099\\ 0.133\end{array}\right\} $	Tetrahedral sheet Octahedral sheet Exchange sites			
O ²⁻ OH ⁻	$0.140 \\ 0.155 $	Both sheets			

Note that Al, Fe, O, and OH can fit in either.

 $a 1 nm = 10^{-9}m.$

Isomorphous Substitution

- In the tetrahedra, AI3+ ions substitute for Si4+ ions
- In the octahedra, Fe2+, Mg2+ ions substitute for Al3+ or Fe3+
- This leaves some of the negative charge unbalanced
- K+, Na+, Ca2+, Mg2+ and other ions can be absorbed on the edges and between sheets to restore charge balance

The tetrahedral and octahedral sheets are the fundamental structural units of silicate clays

> 2 to 4 sheets can be stacked in sandwich-like arrangements (called layers) bound together by the sharing of oxygen atoms

Crystal micelle

> The interlayer zones, binding the layers together is largely controlled by the nature of atom and charge combinations of the sheets forming the individual layers

Silicate Clays Main groups:

1-to-1 silica sheet + alumina sheet = layer (tetrahedral) (octahedral)

2-to-1 silica + alumina + silica = layer (Mg, Fe)

2-to-1-to-1 silica + alumina + silica + magnesia = layer

All are based on the layer (sheet) silicate

Chemical Weathering: Process that changes minerals from their original composition to a new composition

Silicate Minerals in Earth's Crust

Linked SiO₄ tetrahedra form structural backbone for silicate mineral groups

Secondary phylosilicate mineral formation is not always from scratch, but is generally in a dynamic interaction with chemical weathering – ie transformation Alteration versus Recrystallization

Figure 6.4. Schematic picture of edge weathering of large mica particles and layer weathering of small mica particles.

Illite

- -
- 100
- 2-to-1, non-expanding clay mineral often called "hydrous mica" interlayer K+ (as in mica) prevents swelling

$$1.0 \text{ nm} = (-) \qquad (-)$$

Chlorite:

2-to-1-to-1, non-expanding clay mineral like vermiculite, but has positively charged Mg hydroxide sheet replacing exchange cations between 2-to-1 sheets: [Mg₅Al(OH)₁₂+]

1.4 nm

Vermiculite:

- important 2-to-1 clay mineral in soils
- structurally similar to smectites with 3 differences:
 - 1. most or all of isomorphous substitution is tetrahedral
 - isomorphous substitution is greater
 Al³ for Si⁴⁺ (tet.)
 Fe³⁺, Fe²⁺, Mg²⁺ for Al³⁺ (oct.)
 - 3. Mg²⁺ is the usual exchangeable cation
- result of these differences:
 - 1. swelling in water limited to 1.4 nm
 - 2. larger capacity for adsorption of exchangeable cations than smectites

vermiculite smectite

Smectites (a family of minerals):

- important 2-to-1 clay minerals in soils
- each layer has octahedral sheet sandwiched between two tetrahedral sheets
- formula of unit cell is variable, but many common smectites are based on pyrophyllite:

sheets held together at apical oxygen ions

- able to expand in water, increasing size of unit cell & amount of adsorbed water
- shrink/swell behavior is related to the loss or gain of water in the interlayer space
- adsorbed water (n H₂O) is associated with exchangeable cations
- huge surface area due to exposed interlayer surface (800 m²/g)

Kaolinite:

- most important 1-to-1 mineral in soil
- formula shows 1:1 silica/alumina ratio

Al₄Si₄O₁₀(OH)₈ (unit cell)

UNIT CELL = minimum unit which can be repeated to form the crystal structure each layer (unit cell) is 0.7 nm thick

takes 3,000 layers to form a .002 mm thick clay particle

hydrogen bonds hold layers together (hydroxyl contacts oxygen on adjacent layer)

non-expanding in water

little ability to retain cations

1: 1 kaolinite

2:1 smectite

