

Soil Architecture

Texture

Structure

Bulk Density

Organic Matter

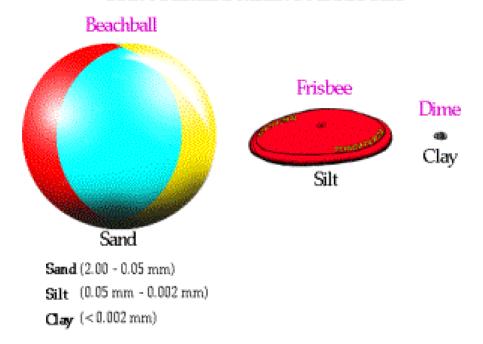
Soil Chemistry

Acidity and Alkalinity (pH and pOH)

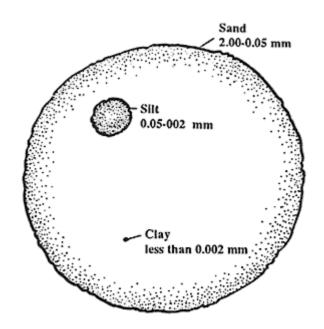
PARTICLE SIZE

Stones, pebbles	Sand	Silt	Clay
Coarse fraction		0.05mm ne-earth f	0.002mm raction"
Coarse Fraction	soi - litt che - hin	l le effect emical pro	sification of on soil's
Fine-Earth Fraction		divided i size sepa	nto 3 main rates:
		SILT (0.05	0 - ,0 _× 5 mm) - 0.002 mm) 0.002 mm)

Particle Size -

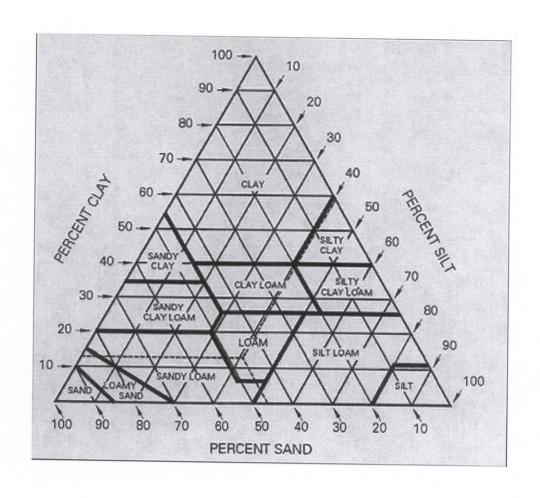

SOIL TEXTURE - refers to particle size (gravelly, sandy, loamy, etc.)

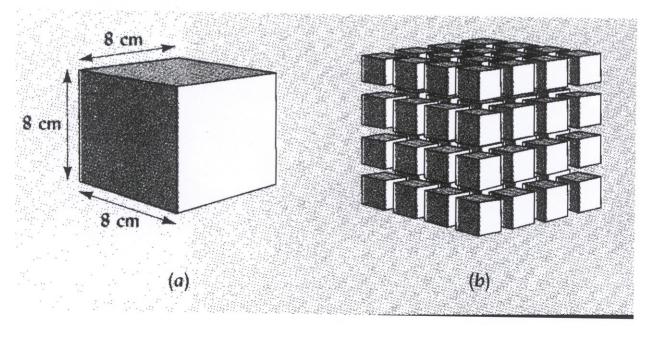
- cannot be changed


Soil Texture

- Course Fragments, Sand, Silt and Clay

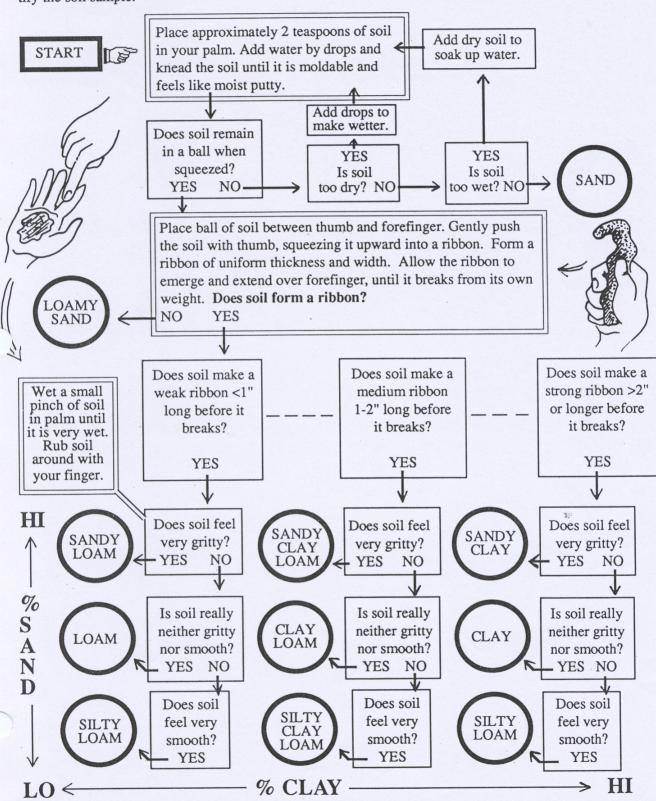
USDA Standard Relative Particle Size




www.cas.umt.edu/ science226/226.soils.htm

http://www.cst.cmich.edu/users/Franc1M/esc334/lectures/physical.htm

	0.0	002 0.	006 0.0	02 0.	06 . (0.2 0.	.6 2.0)	
British Standards	Clay	Fine	Medium	Coarse	Fine	Medium	Coarse	Gravel	
Institution	Clay		Silt			Graver			
International			Silt		S	Gravel			
Society of Clay Soil Science		,3			Fine Coarse				
	0.002 0.0		02	0.2 2.			O		
	(0.0	02		0.05	0.10	0.25 0.5	1.0 2.	0	
United States Department	Clay	Silt		ALCOHOL: THE CANADATA THE PARTY OF	ery ne Fine	Med. Co	arse Very coarse	Gravel	
of Agriculture			311		Sand			Graver	
			Cile		Sand			Carrel	
	Clau		C:1+					C 1	
United States Public Roads Administration	Clay		Silt		Fine	Co	parse	Gravel	



KEY TO SOIL TEXTURE BY FEEL

[Adapted from flow chart by Steve Thien, 1979, source unknown.]

Begin at the place marked "Start" and follow the flow chart by answering the questions, until you identify the soil sample.

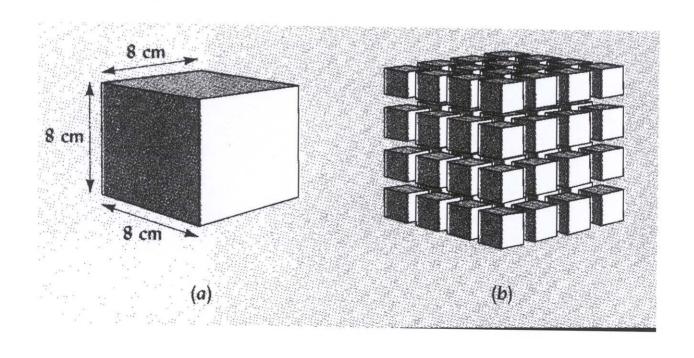
Soil Structure

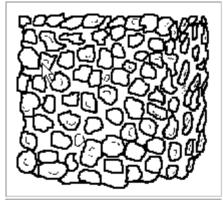
Spheroidal or Granular

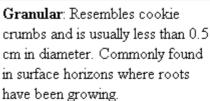
Plate-like

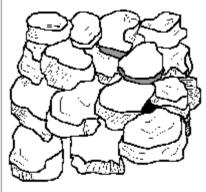
Prism-like

columnar

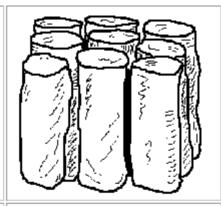

prismatic

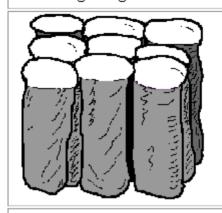

Block-like

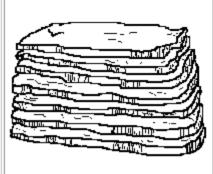

angular blocky


subangular blocky

Massive






Blocky: Irregular blocks that are usually 1.5 - 5.0 cm in diameter.

Prismatic: Vertical columns of soil that might be a number of cm long. Usually found in lower horizons.

Columnar: Vertical columns of soil that have a salt "cap" at the top. Found in soils of arid climates.

Platy: Thin, flat plates of soil that lie horizontally. Usually found in compacted soil.

Single Grained: Soil is broken into individual particles that do not stick together. Always accompanies a loose consistence. Commonly found in sandy soils.

Spheroidal

Characteristic of surface (A) horizons. Subject to wide and rapid changes.

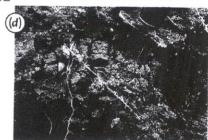
Crumb (very porous)

Plate-like

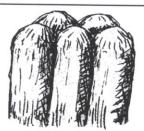
Common in E-horizons, may occur in any part of the profile. Often inherited from parent material of soil, or caused by compaction.

Block-like

Common in B-horizons, particularly in humid regions. May occur in A-horizons.



Subangular blocky

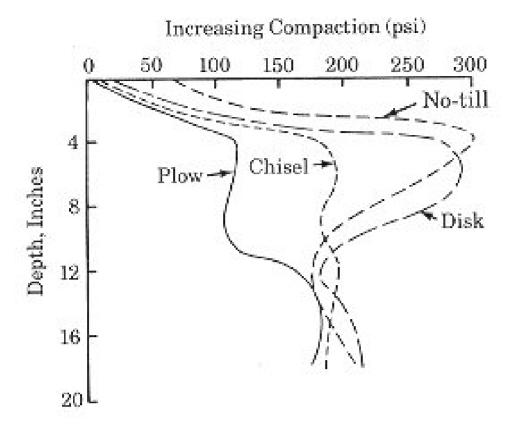


Prism-like

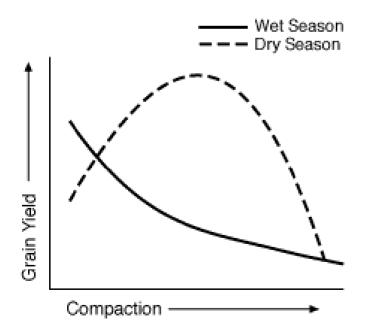
Usually found in B-horizons. Most common in soils of arid and semi-arid regions.

Columnar (rounded tops)

Prismatic (flat, angular tops)


Particle Density:

$$D_P = \frac{W_S}{V_S} = \frac{particle\ mass\ (g)}{particle\ volume\ (cm^3)}$$


Bulk Density:

$$D_b = \frac{W_s}{V_T} = \frac{\text{soil solids mass (g)}}{\text{whole soil volume (cm)}}$$

bulk density < particle density

Soil compaction (measured by cone penetrometer) was higher for no-till than for other systems in an Illinois study. Data: Illinois, USA. Cited in PPI. Fertilizer mangement for today's tillage systems.

adapted from Soane et al., 1994

ORGANIC MATTER

Living - plants, fungi

single-celled organisms (bacteria & algae)

- small animals (protozoa, worms, insects, etc.)

Decomposed - humus - colloidal product of bacterial and fungal decay of plant/animal tissue

- composed of large complex molecules, rather resistant to decay

- causes dark color in topsoil

ORGANISMS

Most obvious first step in soil development is organic matter added to soil surface.

HUMUS -----> organic acids decompositon

chelating agents

H +

SOIL
MINERALS

WEATHERED PRODUCTS

Soil Organic Matter (SOM)

Most soils have less than 5% (by weight) organic material

The main building block of organic matter is carbon (C)

Organic matter is a rich source of phosphorus (P), nitrogen (N) and sulfur (S)

- nutrients critical for plant growth

Soil Organic Collidds

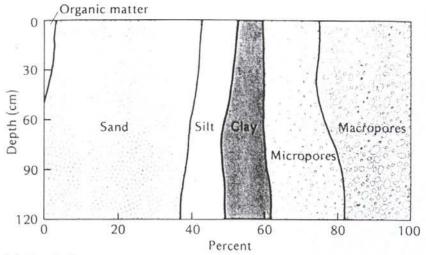
Long C chained molecules

Humus - SOM that decomposes slowly

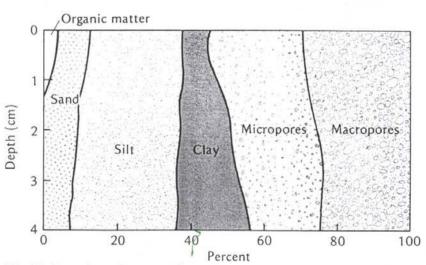
- colors soils browns and blacks
- high surface area and highly + charged

Lignins

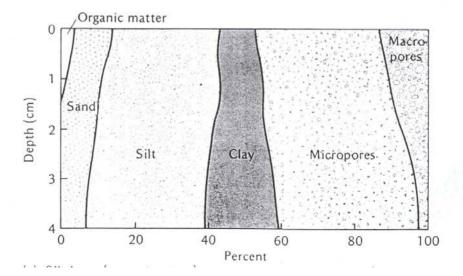
Glucose/Celluloses


Organic matter

improves structure
improves drainage
improves nutrient availability
decreases bulk density


Suspect if more OM present

Poor drainage


Toxicity issues

(a) Sandy loam

(b) Silt loam (good structure)

