Soil Acidity and pH

Acid Soil

$H_2O \leftrightarrow H^+ + OH^$ pH = -log (H⁺) (H⁺) x (OH⁻) = K_w = 10⁻¹⁴

pН

measures H⁺ activity with an electrode (in the lab), solutions (in the field) reflects the acid <u>intensity</u>, not total quantity

Soil pH values worldwide

red = acidic yellow = neutral blue = alkaline black = no data

Soil Acidity and pH: why do we care?

- pH < 3:
 - indicates that sulfides are (might be) present

Controls on chemical reactions:

- ion exchange; specific adsorption, precipitation; redox; weathering; solution speciation

Factors affecting Soil pH:

Balance between acid (H⁺, Al³⁺) and non-acid (Ca²⁺, Mg²⁺, K⁺, Na⁺) cations on <u>colloid surfaces</u>

Balance between acid (H⁺) and base (OH⁻) in the <u>soil</u> solution

Soils resist changes in pH: buffering reactions

Resist increases in pH: reserve acidity

Resist decreases in pH: buffering capacity

Changes in the chemistry of the soil solution reflect-- or are a consequence of-- changes in the chemistry of the soil solids

Active and Reserve Acidity

total acidity = (residual + exchangeable) + active

Active and Reserve Acidity

total acidity = active + (exchangeable + residual)

Forms of reserve acidity:

Acidity (H⁺) release by cation exchange and hydrolysis: exchangeable H⁺ and Al³⁺

 Ca^{2+}/K^+ + H⁺-smectite = H⁺ + Ca²⁺/K⁺-smectite

 $Ca^{2+}/K^{+} + AI^{3+}$ -smectite = AIOH²⁺ + Ca²⁺/K⁺-smectite + H⁺

buffer capacity of the soil

Colloid-Al³⁺/H⁺ (solid) + Ca²⁺/K⁺(aq) = Colloid-Ca²⁺ (solid) + Al³⁺ + H⁺

Factors affecting Soil pH:

Balance between acid (H⁺, Al³⁺) and non-acid (Ca²⁺, Mg²⁺, K⁺, Na⁺) cations on <u>colloid</u> <u>surfaces</u>

Balance between acid (H⁺) and base (OH⁻) in the soil solution

Soils resist changes in pH: buffering reactions

Resist increases in pH: reserve acidity Resist decreases in pH: buffering capacity

Mechanisms involved in the soil's ability to buffer pH

Changes in the chemistry of the soil solution reflect-- or are a consequence of-changes in the chemistry of the soil solids

Mechanisms involved in the soil's ability to buffer pH

High pH (>7):

- dissolution of basic minerals (e.g. Ca and Mg carbonates)

to acid additions

Acid soils are more sensitive to strong acids since the buffering must be achieved by dissolution reactions

Mechanisms involved in the soil's ability to buffer pH

High OM and layer silicate clay content α base cation buffering capacity α CEC (as Σ base cations)

Exchangeable Aluminum (and other cations) in Soils

Acidic cations (Al³⁺ and H⁺) on soil exchange sites vs pH

Aluminum Toxicity

typical

Relative cation composition of exchange

- most common severe problem associated with acid soils

- plant and bacteria populations are affected (plants by (1) blocking Ca entrance into plants, (2) binds with P (in ATP) which inhibits energy transfer and genetic coding, and (3) restricts cell wall expansion)

- rarely a problem above a pH of 5.2

Saturation of Cation Exchange Sites

Acid Cation (Al³⁺ and H⁺) Saturation Percentage

pH is more closely related to the % acid saturation than to the absolute amount of acid cations

Nutrient Availability

At low pH values (high acidity):

- the availability of macronutrients is limited (e.g., Ca, Mg, K, P, N, and S)

- the availability of most micronutrients increases (e.g., Fe, Mn, Zn, Cu and Co)

Optimum pH range for nutrient availability: 5.5-6.5

Appropriate pH conditions for optimal growth of various plants

Plants vary considerably in their optimum pH growth range: appear to be based on sensitivity to Al and their requirement for Ca

Species with high Ca nutrient needs require high pH's where more Ca is available

Species that have optimum ranges in the lower pH's, are typically forest species from humid regions and have developed tolerance for high [Al] and often require higher [Fe] which is more available at low pHs

Most cultivated crops grow well in soils with a slight acidity (5.5 to 7)

Herbaceous plants	Trees and shrubs	4 5	5	6 74		
		Strongly acid and very strongly acid soils	Ra moc aci	ige of erately I soils	Slightly acid ar slightly alkalin soils	d :
Alfalfa Sweet clover Asparagus Buffalo grass Wheatgrass (tall)	Walnut Alder Eucalyptus Arborvitae		20 4.5			
Garden beets Sugar beets Cauliflower Lettuce Cantaloupe	Currant Lilac Ash Yew Beech Lucaena Sugar maple Ponderosa Poplar pine Tulip tree					
Spinach Red clovers Peas Cabbage Kentucky blue grass White clovers Carrots	Philbert Juniper Myrtle Elm Apricot Red oak					
Cotton Timothy Barley Wheat Fescue (tall and meadow) Corn Soybeans Oats Alsike clover Crimson clover Rice Bermuda grass Tomatoes Vetches Millet Cowpeas Lespedeza Rye Buckwheat	Birch Dogwood Douglas fir Magnolia Oaks Red cedar Hemlock (Canadian) Cypress Flowering chenry Laurel Andromeda Willow oak Pine oak Red spruce Honey locust Bitterut hickory					
Red top Potatoes Bent grass (except creeping) Fescue (red and sheep's) Western wheatgrass Tobacco	American holly Aspen White spruce White Scotch pines Loblolly pine Black locust					
Poverty grass Eastern gamagrass Love grass, weeping Redtop grass Cassava Napier grass	Autumn olive Birch Blueberries Coffee Cranberries Azalea Rhododendron — White pine Red pine Teaberry — Tea Hemlock (NC) Blackjack oak					

Soil pH

Chemically: What is the <u>result</u> of soil acidification?

decrease in soil pH (eventually)

augment the reserve acidity of soils

decrease buffering capacity of soils

mineral dissolution

Formation of acid rain and its impact on distant watersheds. N and S emissions from combustion of fossil fuels (electric power plants, vehicles). Sulfuric and nitric acids (in clouds) return to earth in precipitation and dry deposition. Soil acidification occurs – accelerate Ca and Mg losses. The principal ecological effects in <u>sensitive watersheds</u> are the decline in forest health and aquatic ecosystems.