Practical Nutrient Management (II)

NUTRIENT "AVAILABILITY"

Vague term which depends on:

- 1. Conc. of nutrient in solution
- 2. Speed of nutrient replenishment to solution
- 3. Mobility of nutrient in soil

DEFINITION:

AVAILABILITY IS THE SOIL'S ABILITY TO <u>MAINTAIN</u> "HIGH" CONCENTRATIONS IN SOLUTION (in vicinity of root)

- Fertilizer a material (natural or synthetic, inorganic or organic) that provides <u>useful</u> quantities of a plant nutrient in forms that can become soluble in soil.
 - increases availability (3 factors above)
 - builds up reserves

- Availability may vary from soil to soil even when the same <u>amount</u> of nutrient is present because:
 - 1. Some nutrients are replenished by organic decomposition (eg. NO₃, NH₄)
 - Depends on kind of organic matter
 - soil water content
 - temperature
 - 2. Nutrients may be retained more tightly if the soil has a high capacity to adsorb that nutrient (eg. P,K)

(slows TRANSPORT)

MOST RELIABLE MEASURES OF NUTRIENT AVAILABILITY

1. SOIL TESTS (?)

(See 3 factors that control availability)

2. PLANT RESPONSE

Amount of Nutrient Added ---->

NUTRIENT CYCLING & LOSSES

Nutrient cycles in soils are "leaky", especially in highly fertile soils.

Nutrient losses by:

SOIL EROSION CROP REMOVAL VOLATILIZATION OF GASES LEACHING

EROSION - removes P & N (in solids)

- enhanced on bare soil
- promotes algal growth in lakes

CROP REMOVAL - necessary result of agriculture

- N & K removed most
- minimized by returning crop residues to soil

GASEOUS LOSSES - NH₃ volatilization (esp. alkaline soil)

- NO₃, SO₄ reduction (wet)
- burning --> N & S escape
 (N₂O, NO₂, SO₂)

LEACHING - possible loss of <u>all</u> soluble nutrients

- most significant NO₃, SO₄, K⁺
- phosphate lost only in sandy soil
- minimized by fertilizing at right time in right amount

HYPOTHESIS:

"HEALTHY CROPS USE NUTRIENTS BETTER"

Managing Plant Nutrients

Fertilizer manufacture and use does <u>not</u> create nutrients:

- (a) animal manure, green manure, composts ---> contain nutrients taken from soil.
- (b) inorganic fertilizers ---> mined from enriched deposits.

Therefore, fertilizers are a <u>non-renewable</u> resource.

Exception: N₂ fixation (biological & chemical)

BUT Large energy cost

NUTRIENTS:

NITROGEN

Most extensively used, in greatest amounts

N deficiency is <u>normal</u> (few soils can sustain repeated cropping without N supplements).

PHOSPHORUS

Deficiency occurs on ≈ 70% of agricultural soils.

POTASSIUM, SULFUR, ZINC

Deficiency is common

NUTRIENTS:

IRON, BORON, MOLYBDENUM, MAGNESIUM, COPPER, MANGANESE

Deficiency less common

CHLORINE, COBALT, SODIUM

Deficiency rare

CALCIUM

Deficiency rare
<u>But</u> in excess, Ca suppresses problems with

- Soil acidity
- Sodicity
- Salinity

Nutrients Removed by Crops

Crop	Yield (tonnes/ha)	Nutrients Removed (kg/ha/crop)					
	*	N	P	K	Ca	Mg	S
wheat grain	6	120	30	30	25	15	5
alfalfa hay	20	500	45	350	250	50	50
tomatoes (fresh)	20	150	25	200	10	15	20

Typical (California) Fertilizer Application Rates

Rates Applied (kg/ha/yr)

Crop	N	P	K
field crops	100	7	4
vegetables	150	35	40
alfalfa	0	30	15

FERTILIZERS

Natural - organic (manures, compost, etc.)

inorganic (rock phosphate, etc.)

Manufactured

Nitrogen Fertilizers -

N in soil, plants, animals ultimately comes from atmospheric N_2 .

Worldwide - 50% from biological fixation

- 50% from industrial process

e.g. Haber process

$$N_2 + H_2 - NH_3(g)$$
catalyst

from coal, petroleum, natural gas

Ammonia is injected into soil.

Other N fertilizers:

$$NH_3$$
 ----> HNO_3
 O_2
 $HNO_3 + NH_3$ ----> NH_4NO_3
ammonium nitrate

 $HNO_3 + lime$ ----> $Ca(NO_3)_2$
 $NH_3 + C + steam$ ----> $CO(NH_2)_2$
urea

 $NH_3 + H_3PO_4$ ----> $(NH_4)_3PO_4$
ammonium phosphate

PHOSPHORUS FERTILIZERS-

POTASSIUM FERTILIZERS -

mined from sedimentary deposits of KCl and K₂SO₄

SULFUR FERTILIZERS -

gypsum (CaSO₄) - abundant

mined from sedimentary rock

- fairly soluble

elemental sulfur (S) - mined insoluble, but oxidizes in soil:

S + O₂ --> SO₄ + H⁺

superphosphoate (9% P) - contains CaSO₄

ORGANIC FERTILIZERS -

GROWER CHOOSES FERTILIZER BASED ON:

1. NUTRIENT CONTENT

"Complete fertilizers"

- multinutrient
- not cost-effective for commercial growers

"Simple fertilizers"

- one or two nutrients
- used by most commercial growers

2. RELEASE RATES

- A. Most inorganic fertilizers have <u>fast</u> release.

 EXCEPTIONS: ROCK PHOSPHATE

 ELEMENTAL S

 S-COATED UREA
- B. Most organic fertilizers release nutrients slowly ---> "mineralization" of N, P, S, etc.
- SLOW RELEASE advantages reduced nutrient loss disadvantages release slower than demand

3. AVAILABILITY and COST

Cost is based on price per unit wt. of N, P, K, etc. (not fertilizer wt.).

High-analysis fertilizer <u>may</u> be preferred despite price because of lower <u>bulk</u>.

(Organic fertilizers usually have low analysis, bulky to handle)

4. CONVENIENCE & EASE of USE

Physical state, solubility, stability of material, determines labor & equipment needs.

Anhydrous NH₃ - needs injection equipment Urea, NH₄NO₃ - do not

5. SIDE EFFECTS

Soluble salts damage plants, microbes

Organic materials (in excess)

- clog soils
- cause anoxic conditions
- produce organic toxicities

Leached fertilizers pollute streams & groundwater

Soils are acidified by ammonium fertilizers or ammonium-releasing processes (N₂ fixation, organic fertilizers)

Secondary deficiencies are enhanced (eg. Zn by phosphate)

DETERMINING FERTILIZER NEEDS

Deficiency diagnosis can be done by:

- 1. Educated guess (i.e. experience)
- Interpretation of visual symptoms (ambiguous)
- 3. Analysis of soil samples
- 4. Analysis of plant samples
 - tissue tests
- Nutrient Response Trials (field or greenhouse) too slow & expensive

Rate of Nutrients to be Added determined by:

- 1. Educated guess
- 2. Measured response curves

3. Yield expectation (maximum yield is rarely economical).

SOIL TESTING

"Availability" of nutrient in soil is difficult to define or measure.

Diagnostic soil tests must be:

- 1. FAST!
- 2. CHEAP!
- 3. SIMPLE!
- 4. CORRELATED TO PLANT RESPONSE (deficiency and toxicity)

Successful soil tests exist for

PHOSPHATE
POTASSIUM
ZINC
ACIDITY (lime requirement)
SALINITY

Simple soil tests for N and S have <u>not</u> been successful.

All soil tests extract some <u>part</u> of the soil's total supply of an element.

Soil Sampling - heterogeneity requires mixing of "subsamples" to get a representative sample.

A = successful P extraction method

B = unsuccessful P extraction method

Soil test procedures vary regionally, are calibrated locally.

IMPROVING FERTILIZER EFFICIENCY

TIMING - add "slow-release" or "timedrelease" fertilizer - or add nutrient when needed

APPLICATION METHODS:

METHOD	ADVANTAGES	DISADVANTAGES		
BROADCAST	- fast - convenient	 poor nutrient accessibility more soil contact volatile gas loss 		
INJECTION & BANDING	reduced soil interactionreduce volatile loss	 root toxicity in band 		
SOLUBLE FORM	 convenient for irrigation controlled application rate 	 cost of transporting bulk 		
FOLIAR SPRAY	fast responseaccurate timingno soilimmobilization	 needs repeated application> costly 		

