Nutrients: Nitrogen (N), Sulfur (S), Phosphorus (P), Potassium (K)

Essential for all life, their availability (or lack thereof) controls the distribution of flora and fauna

Look into their:

Nutrients must be in a specific form - specie - for use by organisms

Nutrients: natural & anthropogenic sources (IN) and outputs (OUT)

fertilizers (chemical, manure, sludge) pesticides

wet and dry deposition (acid rain, aerosols) plant tissue/residues

SOIL **Pools (sinks)** (SOM/clays/oxides) Fluxes (transformations) roots (exudates, biomass)

ions and molecules in solution (leaching) colloidal transport erosion

runoff

bedrock (1^{ry}/2^{ry} minerals in parent material)

gases and particulates to atmosphere

(fossil fuel combustion (coal/oil); cycles; trees)

harvesting

root uptake

The Nitrogen Cycle

The Nitrogen Cycle

Nitrification: NH₃ to oxidized forms of N (NO₂⁻, NO₃⁻) (energy-releasing) Oxidation of N₂ does not occur except in a few organisms (N-N triple bond) N-fixation: enzymecatalyzed reaction (occurs only in living organisms)

The Sulfur Cycle

The Sulfur Cycle

Sulfur undergoes dramatic changes in redox cycling

Oxidation states range from +6 to -2

metal sulfides tend to be "insoluble" (Hg, Ag, Cd, Cu, Pb, Zn, Fe(II))

In soil, SO₄²⁻ originates from

- Organic matter
 mineralization
- Weathering of soil minerals
- Sulfur inputs from atmosphere

The Phosphorus Cycle

P primarily as phosphate (PO_4^{3-}), with an oxidation state of 5+

Mostly in organic P and inorganic P forms

 PO_4^{3-} is strongly retained by soils but can be transported in colloidal forms PO_4^{3-} sorption onto AI and Fe oxides is strong

Phosphate minerals (low solubility):

AI and Fe phosphates (acid mineral soils) (variscite, AIPO₄.2H₂O) (strengite, FePO₄.2H₂O)

Ca phosphates (non acid soils) (hydroxyapatite, Ca₅(PO₄)₃OH)

The Potassium Cycle

Potassium as K⁺ with no changes in oxidation state

K⁺ flux controlled by CEC & chemical weathering ~ no organisms

Sources: Primary and Secondary Minerals

